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Abstract

The rapid transition of critical business processes to computer networks potentially

exposes organizations to digital theft or corruption by advanced competitors. One tool

to steal company secrets or manipulate information is malware. Malware circumvents

legitimate authentication mechanisms and is an epidemic problem for organizations

of all types, including governments, militaries, sectors of critical infrastructure and

businesses.

This research proposes, designs, implements and evaluates a novel Malware Target

Recognition (MaTR) architecture for malware detection and identification of prop-

agation methods and payloads to enhance situation awareness in tactical scenarios

using non-instruction-based, static heuristic features with standard machine learning

algorithms. Recent published research in static heuristics focuses on detection using

n-grams as features, which are computationally determined, short n-byte sequences

that are resource intensive to compute and directly unintelligible to human operators.

MaTR achieves a 99.92% detection accuracy on known malware with false positive

and false negative rates of 8.73e-4 and 8.03e-4 respectively.

In comparison, MaTR outperforms leading n-gram methods with a statistically

significant 1% improvement in detection accuracy against known malware and 85%

and 94% reductions in false positive and false negative rates respectively. Against a

set of publicly unknown malware, MaTR detection accuracy is 98.56%, a 3.8% engi-

neering advantage over n-gram methods and a 65% performance improvement over

the combined effectiveness of three commercial antivirus products (both statistically

significant). MaTR identification of propagation methods and payloads are greater

than 86% and 83% respectively, which is comparable to existing research, but relies on

iv



simpler features to collect allowing for efficient retraining and redeployment. Collec-

tively, MaTR classifiers provide a significant improvement over existing technologies

and enable operators to achieve higher levels of situation awareness in cyberspace.
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A NOVEL MALWARE TARGET RECOGNITION ARCHITECTURE

FOR ENHANCED CYBERSPACE SITUATION AWARENESS

I. Introduction

The widespread adoption of networked Information and Communication Technolo-

gies (ICT) by all facets of society has made massive amounts of valuable information

vulnerable to digital theft. As organizations and individuals embed ICT into their

core operational processes, many have unwittingly exposed themselves to exploita-

tion. The result is an extremely appealing target for competitors and a new wave of

cyberspace criminals lured by easy profit and unlikely prosecution. More information

is available today for surreptitious exploitation than ever before, while organizations

continue to struggle with standard computer network defense (CND) practices and

are only beginning to realize true attacker perceptions of their information’s value.

1.1 Motivation

Malware, a portmanteau of “malicious software,” is the cyberspace weapon sys-

tem of choice enabling attackers to conduct a wide gamut of offensive information

operations as evidenced by the now infamous Stuxnet worm [43]. The Stuxnet worm

payload causes a loss of data integrity for supervisory control and data acquisition

(SCADA) systems [43], which are systems that run industrial control systems, such

as power grids. One of the most dangerous operations is data exfiltration, where the

attacker increases their competitive edge by harvesting sensitive information from

unsuspecting victims. Imagine the value and impact of obtaining blueprints for the
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most advanced jet fighter [35] at no substantial cost or obtaining millions of sen-

sitive customer records [29].

Malware detection has been an active computer security research area for decades.

Advances in this area have not produced a “silver bullet” solution to this problem,

because it is ultimately a human enterprise. Solutions should enhance human effec-

tiveness to defend the network, not replace them. A relatively small set of malware

can hide amongst a million unique executables on large networks making it difficult

for humans to find without a form of automated assistance.

With attacker motivation at an all-time high, customized malware attacks are

becoming more common and allow adversaries to sidestep the traditional front-line

defense, signature-based antivirus software [14, 15]. Antivirus software often fails

to detect targeted threat tools that use similar methods to those described by [14],

namely dead-code insertion, code transposition, register reassignment, and instruction

substitution.

Cyberspace adversaries are adaptable foes, and methods to detect them must also

adapt or risk becoming obsolete. This observation has produced unique research

momentum for new detection technologies that do not require a continual stream of

updated antivirus signatures [24, 87]. Generic detection technologies make extensive

use of classic pattern recognition and machine learning techniques. If hackers can

victimize governments and high-profile corporations by avoiding antivirus software,

the risk to lesser-financed organizations is likely higher than perceived. Visibility into

network activity is limited, because of the immense volume of data and the difficulties

associated with effective data reduction.
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1.1.1 Hypothetical Scenario.

In order to understand the current state of one’s own network, one must first have

sufficient situation awareness (SA). Endsley [32] defines SA as “the perception of the

elements in the environment within a volume of time and space, the comprehension

of their meaning and the projection of their status in the near future.” With ade-

quate SA, organizations can perceive previously unknown threats, comprehend threat

capability and ultimately project future threat activity. Taken further, sufficient SA

enables organizations to short circuit the impact of continuing threat activity.

Figure 1 shows a partial network diagram for a fictitious company with three major

business divisions. In this example, malware exists on the circled systems. With

traditional defenses, even this simple detection information is most likely unavailable

to organizations—especially if their information piques the interest of competitive

large corporations or nation-states. Published research finds that simple obfuscations

are enough to thwart commercial antivirus signatures [14, 15].

A generic malware detection capability does not rely on a signature database for

byte sequences [5, 87, 91] to make specific identifications or instructions [87, 91] to

make static heuristic matches. A generic malware detection capability can illuminate

a portion of the unknowns allowing an organization to detect threats. They may

not know the threat capability, but they know the threat is present. The generic

detection information corresponds to the first level of the Endsley SA model [33],

perception. The information afforded by generic detection capabilities alone, however,

is not necessarily actionable. In the situation from Figure 1, leadership cannot deduce

threat intentions or next moves with detection information alone. Therefore, the

decision making process can only consider vague information regarding possible threat

intent and likely next targets.
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Figure 1. Situation awareness indicators afforded by malware detection.

1.1.2 Advanced Persistent Threat Motivation.

Christodorescu and Jha [14] summarize the conflict between malware authors and

researchers as an “obfuscation-deobfuscation” game, where advances from either side

prompt retaliatory responses to at least maintain the status quo. Although an excel-

lent observation about the tactics employed between two major players, it falls short

of casting the strategic level problem to the players on a different plane, specifically

potential victims. An operational extension of their observation is the game of “cat-

and-mouse” between organizations and advanced competitors that employ malware

to maintain unauthorized access to sensitive information.

In this high-tech cat-and-mouse game, threats (the mice) have a major asymmetric

advantage over the victim cats, because the cats are essentially blind, deaf, or halt

with respect to minor changes in mouse tactics. Normally, commercial antivirus

products (the mousetraps?) are the cat’s most reliable indicator of mouse presence.
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If these mice discover methods to beat the mousetrap [14, 15], though, they can

steal the cheese. What is the “cheese” that the mice are after? They seek access to

sensitive information, such as intellectual property, operations plans, personnel data,

schedules, etc. Armed with this information, the mice ultimately hope to erode the

cat’s competitive advantage.

Christodorescu and Jha [14, 15] highlight difficulties commercial products have

with handling simple obfuscation techniques, such as nop (a “no operation” assem-

bly instruction) insertion and inserting unconditional branches (opaque predicates

as described in [19]). In their test, they randomly apply these transformations to

known malware samples that three commercial antivirus products initially detected.

After transformation, they find that all three antivirus products failed to recognize

ten unique mutations of the malware samples.

Competitive threats can easily employ similar techniques to make unique malware

samples that victim defensive tools cannot detect. An advanced persistent threat

(APT) is a nation-state- or large corporation-sponsored competitive threat that is

capable and determined to accomplish its goals [8]. While malware is not the only

method of gaining information at the APT’s disposal, it can satisfy their operational

needs for victim network access, data exfiltration and data corruption. According

to Bejtlich [8], achieving cyberspace SA allows organizations to potentially discover

and thwart APT operations. Major asymmetric advantages of the competitive threat

include unauthorized access to competitor sensitive data, low likelihood of discovery

and prosecution, and low tool development cost. Ethics aside, the return on invest-

ment of this employment strategy is extremely high. The strategic level shortcomings

of the status quo are the motivations for this current research.
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1.2 Research Goals

The major goal of this research is to significantly enhance cyberspace SA ca-

pabilities regarding malware threat activity by developing targeted machine learning

classifiers that provide the operator with relevant threat information. Relevant threat

information directly enhances the operator’s ability to achieve higher levels of SA by

identifying threat attributes, such as malware propagation methods and payloads.

In addition to detection, the classifiers in the Malware Target Recognition (MaTR)

architecture identify the risk of threat spread across the network and specific threat

capabilities. As a measure of success, each targeted classifier should demonstrate su-

perior performance to current research and commercial products that provide similar

information.

These goals coincided with the vision of the Chief Scientist of the United States

Air Force (USAF) when he previously introduced the concept of enterprise Focused

Long Term Challenges (FLTCs) and identified where cyberspace research fits into the

strategic vision for technology [20]. He indicated that the USAF cyberspace mission

is burgeoning and becoming recognized as a vital element with far reaching effects on

operations.

In turn, the Air Force Research Laboratory (AFRL) Executive Director previously

attributed specific focus areas to the Air Force enterprise FLTCs [78]. The eight

identified FLTCs (shown in Table 1) also relate to the specific focus areas in Table 2.

This cyberspace research effort targets the CND and SA focus areas, which directly

impact the following FLTCs: #1, #5, #7 and #8.

Arguably, the greatest impact of this research is in assurance of operational ca-

pability in high-threat environments (FLTC #5). This particular capability is im-

portant not only in wartime, but equally so in peacetime. The USAF has a great

wealth of both operations and research information stored on government, industry
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Table 1. AFRL FLTCs for cyberspace.

FLTC Name
FLTC #1 Anticipatory Command, Control & Intelligence
FLTC #2 Unprecedented Proactive Intelligence, Surveillance & Reconnaissance
FLTC #3 Dominant Difficult Surface Target Engagement & Defeat
FLTC #4 Persistent & Responsive Precision Engagement
FLTC #5 Assured Operations in High Threat Environments
FLTC #6 Dominant Offensive Cyber Engagement
FLTC #7 On-demand Force Projection, Anywhere
FLTC #8 Affordable Mission Generation & Sustainment

Table 2. AFRL FLTCs focus areas for cyberspace.

Focus Area
Computer Network Defense
Command and Control
Situational Awareness
Electronic Warfare
Cyber Network Attack
Cyber Exploitation

and academic networks—much of which is beyond the direct control and protection

of the USAF enterprise. A compromise of key weapon system information not only

jeopardizes future capabilities, but potentially wastes an exorbitant amount of the

nation’s capital. The impact of this research may not only preserve current enter-

prise operations and national fiscal resources, but also future weapon systems and

operations.

Researchers and information assurance experts widely criticize major current CND

technologies, specifically antivirus and intrusion detection systems (IDS), as inade-

quate to meet security requirements. Such solutions are prone to fail at detecting

novel or adapted threats [14, 24, 65]. Their coarse outputs have questionable effec-

tiveness as indicators for cyberspace SA, because the provided information is not

actionable until confirmed or combined with other sources. For instance, an antivirus

product may alert an operator of the presence of malware ABC, but the operator
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must often research ABC ’s functionality for damage assessment. Only when com-

bined with this description does the discovery of malware ABC become actionable.

The MaTR architecture directly provides additional, relevant threat information to

the operator without casting additional manual processes on the user.

This research provides a potentially disruptive technology in malware detection

with additional threat information, which can provide the USAF, the Department of

Defense and the United States government with an asymmetric advantage in CND.

This technology has the potential to identify previously unknown, custom malware

attacks that can cripple data networks and the operations which rely on their contin-

ued presence. Coupling this detection information with additional, targeted threat

information, such as malware propagation methods and payloads, enhances the ability

of experienced operators to achieve SA in cyberspace.

1.3 Research Contribution

Static analysis of malware does not require central processing unit (CPU) emula-

tion [87, 91]. “Heuristic” has a Greek root and means “to discover”, but in malware

research it refers to algorithms that provide suboptimal solutions to complex problems

[87]. Static heuristics are heuristic solutions obtained through static analysis. Cur-

rent static heuristic malware research focuses on using the following feature sources

for detection:

1. strings [17, 77],

2. structure [72, 77, 91],

3. anomalies [72, 77, 91, 96],

4. instructions [9, 14, 15, 16],
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5. application programmer interface (API) calls [9, 77, 85, 91],

6. control flow graphs [9, 16], and

7. n-grams [1, 5, 46, 47, 77, 92, 94].

A malware author can easily manipulate strings to a avoid a string-based detection

method [77]. Items 4 through 6 require a correct disassembly of program instructions

to make determinations, which is a difficult (if not impossible) task [65]. The same

way attackers can manipulate strings to avoid detection [77], they can manipulate

n-grams as well. On the other hand, manipulation of structure and anomalies may

require avoiding common malware defenses, such as packing. This research examines

the effectiveness of a proposed architecture using only anomaly and structural features

to detect malware. Other static heuristic research [72, 77, 96], which uses similar

features to MaTR, does not achieve the same level of performance. The proposed

MaTR architecture achieves a statistically significant improvement over the remaining

primary non-instruction-based static heuristic, n-grams.

Additionally, this research expands the application problem of non-instruction-

based, static heuristic features to the identification of malware propagation methods

and payloads. These observations are key components to framing threat context

and producing operationally actionable information. Few researchers examine similar

applications with static heuristics [47], which is critical threat information to enhance

cyberspace SA. The MaTR prototype has higher mean performance than comparable

research for malware propagation methods and payloads.

Finally, a mapping of experimental results to Endsley’s SA model [33] for a typical

scenario demonstrates how this research leads to a heightened awareness of threat ac-

tivity. This SA, as explained later in detail, ultimately gives operators and leadership
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clearer information on which to base strategic and tactical decisions. No other known

malware research includes an extensive operational mapping to SA models.

1.4 Dissertation Organization

This document consists of five chapters. Chapter II is a literature review, which

thoroughly discusses relevant research in machine learning techniques, static heuristic

methods for malware detection and classification as well as SA. Some of the research

results contribute to setting performance goals for the final solution in this work,

while others assist in articulating the solution’s high-level impact in the context of

multiple frameworks.

Chapter III describes the process followed to generate the final MaTR architec-

tural prototype for study. It includes details gleaned from pilot tests to determine

appropriate approaches to address the problem, design decisions and determine model

parameters.

The experimental results in Chapter IV demonstrate the engineering advantage of

the final prototype. When practical, experimental results include direct comparisons

between the resulting MaTR model and results from re-accomplishing prominent tests

from other research. The discussion also maps experimental findings to a common

SA model.

A summary of this work follows in Chapter V highlighting the contributions and

impact of this research. This concluding chapter also identifies practical areas for

research extension.

1.5 Summary

This chapter introduces the research motivation and frames the fundamental prob-

lem. It also defines the major goals of this investigation. Finally, this chapter presents
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the research contributions of this work in terms of the malware detection and classi-

fication problems and their connections to the most common SA model.
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II. Literature Review

2.1 Overview

This chapter presents a complete literature review of related and relevant re-

search, which encompasses basic classification capabilities from artificial intelligence

(AI), malware analysis techniques and finally prior research applications of machine

learning algorithms to malware detection and classification. The machine learning

techniques included in this review are those that dominate the AI applications in

malware detection in published literature and those suggested by the success associ-

ated with preliminary experiments.

The antivirus industry has a notorious past for disagreement on general names

for specific malware samples [10]. Consistent naming across vendors is important to

the user community, because it simplifies communications concerning major threats.

If the same threat has different names, users cannot leverage appropriate response

actions. The published research in malware detection and classification using machine

learning techniques utilizes a small set of feature sources and learning methods.

This chapter presents an overview of the Endsley SA model [33]. This section

focuses exclusively on this SA model, because of its prevalence in the literature. Dis-

cussion emphasizes the pertinent portions of the model related to this research. A

brief description of confusion matrices and associated statistics concludes this chap-

ter.

2.2 Artificial Intelligence

This section describes in depth many popular machine learning techniques found

in malware detection research. Several machine learning techniques exist that show

promise in the malware detection problem, but some dominate the literature. In
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particular, many of the techniques have application to both continuous and discrete

datasets, which is an important consideration as discrete numbers dominate the fea-

tures commonly associated with computer programs. As classic antivirus signature-

based solutions become overwhelmed by an exponential growth in malware, pattern

recognition based solutions are gaining importance and popularity [91].

2.2.1 Discriminant Analysis.

Variants of discriminant analysis techniques include continuous multiple discrim-

inant analysis (MDA) [28] and discrete discriminant analysis (DDA) [22]. Both tech-

niques use common statistical methods to determine discriminant scores. Finally, a

discriminant function, quite often a form of midpoint or distance measure, determines

class membership for individual exemplars based on their respective discriminant

scores.

2.2.1.1 Multiple Discriminant Analysis.

MDA is a generalization of the two-class linear discriminant analysis and Fisher’s

linear discriminant function (LDF) [28]. As linear discriminant analysis projects

sample data onto a single line for the discriminant function, MDA generates multiple

projections based on the number of classes and features. In many MDA applications,

the first projection axis exhibits the most discriminant “value” in the dataset with

subsequent projections having the same or less value in the classification.

Ideally, MDA [28] produces (C − 1) linear transformations of features, where C

is the number of classes, such that scores associated with objects of each class have

grossly different means and minimal variances. The underlying model assumptions

include multivariate normality, different class means and identical covariance matrices
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for all classes. The following equations follow the nomenclature of using bold English

and Greek capital letters to denote matrices and bold lowercase letters for vectors.

MDA defines a within-class scatter as a measure of the variance about each class

mean [28]. Equation 1 shows the formula for computing the within-class scatter

matrix, SW , where x is an observation vector of features, Xc denotes the set of all

observations of class c of C classes and the class mean vector of features is µc.

SW =
C∑
c=1

∑
x∈Xc

(x− µc)(x− µc)
T (1)

Equation 2 is the formula for calculating the total scatter matrix, ST , where Mc

is the number of observations in class c and µT is the overall class-independent mean

vector of features. Since the definition of total scatter is ST = SW + SB, where SB is

the between-class scatter, Equation 3 follows.

ST = SW +
C∑
c=1

∑
x∈Xc

Mc(µc − µT )(µc − µT )T (2)

SB =
C∑
c=1

∑
x∈Xc

Mc(µc − µT )(µc − µT )T (3)

Equation 4 simultaneously calculates all projections of vector x onto transformed

vector y via the desired transformation matrix WT. Equations 5 and 6 are the

formulas for determining the within-class and between-class scatter matrices for the

projected data (S̃W and S̃B respectively) based on the scatters from the original data.

y = WTx (4)

S̃W = WTSWW (5)

S̃B = WTSBW (6)
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The original goal is to maximize the between-class scatter (highly separated class

means) while simultaneously minimizing the within-class scatter (minimize variance

for each class). Achieving these goals is equivalent to finding W that maximizes

J(W) in Equation 7. Maximizing J(W) requires W composed of the concatenation

of the eigenvectors associated with the largest eigenvalues in the generalized eigenvalue

problem in Equation 8.

J(W) =

∣∣∣S̃B∣∣∣∣∣∣S̃W ∣∣∣ =
|WTSBW|
|WTSWW|

(7)

SBwc = λcSWwc (8)

According to Duda, et al. [28], computing the inverse of SW is unnecessary and

instead finding the roots of Equation 9 and then solving Equation 10 is preferable.

MATLAB provides the polyeig command [56] for finding the roots and solving, which

requires subsequent sorting operations for the resulting eigenvalues and eigenvectors.

|SB − λcSW | = 0 (9)

(SB − λcSW )wc = 0 (10)

After solving for W, the correct choice for a classification function if the covariance

matrices for each class are not equal is a quadratic discriminant function (QDF)

(Equation 11). The value of gc is the discriminant score for each sample for each

class, where the largest score indicates the class to assign the sample. Note that

Equation 11 also projects the data.

gc(x) = xTWcx + wc
Tx + wc0 (11)
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In Equation 11, Wc (Equation 12) and wc (Equation 13) are the combined pro-

jection matrices for the quadratic and linear terms and wc0 (Equation 14) is an offset.

In these equations, Σc is the covariance matrix and P (ωc) is the prior probability of

a sample belonging to class c. Figure 2 is a sample plot of Fisher iris sepal length

and sepal width data for versicolor and virginica classes and the corresponding QDF

classifier. This example is an adaptation of [55].

Wc = −1

2
Σ−1c (12)

wc = Σ−1c µc (13)

wc0 = −1

2
µT
c Σ−1c µc −

1

2
ln |Σc|+ lnP (ωc) (14)

2.2.1.2 Discrete Discriminant Analysis.

Dillon and Goldstein [22] present a method of DDA that uses densities and a priori

probabilities to classify new exemplars. In their model, a set of discrete random

variables, X1, X2, . . . , Xp, each assume a specific value from a finite set of distinct

values, s1, s2, . . . , sp. Here x denotes a specific realization of X. The set of all distinct

values is given by the product
∏p

i=1 si. The discriminant score for an exemplar is

given by Equation 15. In Equation 15, fi(x) is the class conditional density for class

i and Pi is the a priori probability for class i (see Equation 16) with ni number of

class i samples and n total number of samples.

gi(x) = Pifi(x) (15)
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Figure 2. Sample MDA with QDF decision boundary (adapted from [55]).
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Pi =
ni
n

(16)

Equation 17 shows the estimate for class conditional density, where ni(x) is the

number of observations from class i with characteristic x and ni is the number of

observations from class i. The simplified estimate for the discriminant score, ĝi(x),

is Equation 18. Finally, the discriminant function assigns class membership to the

highest discriminant score. In the event of equal scores, the assignment is random

among the classes associated with the equality.

f̂i(x) =
ni(x)

ni
(17)

ĝi(x) =
ni(x)

n
(18)

This method performs poorly when the feature set enumeration does not clearly

separate the classes as the sample data of cancer observations in New York of males

and females from [82, 83] shown in Table 3 suggests. Based on the table, the model

assigns all new exemplars with feature x1 = 1 to Class 1, because Class 1 has a higher

discriminant score than Class 2, but only about half of the samples with feature

x1 = 1 actually belong to Class 1. Nearly half of exemplars with the trait x1 = 1

are misclassifications leading to high error rates. The ideal cases in this example are

when features x1 = 2 and x1 = 3, which demonstrate mutually exclusivity between

classes. In spite of its drawbacks, this model has inherent advantages, such as the

ability to trivially handle the exclusive or (aka xor) problem.

2.2.2 Feedforward Neural Networks.

A feedforward neural network (FNN) is a model motivated by models of neurons in

the brain. Figure 3 shows the biological inspiration for neural networks. In a greatly

simplified explanation of this theory, a neuron sends signals down its axon which may
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Table 3. Discriminant scores for cancer data using DDA.

Cell Class 1 (Males) Class 2 (Females)
x1 Observed ĝ1 Observed ĝ2

0 (Lung) 7, 355 0.268 4, 831 0.176
1 (Melanoma) 1, 104 0.040 964 0.035
2 (Ovarian) 0 0 1, 563 0.057
3 (Prostate) 9, 986 0.364 0 0
4 (Stomach) 1, 014 0.037 618 0.023

pass these signals via a synaptic connection with a receiving neuron’s dendrites [38].

The theory also describes how data processing takes place in the neuron and synaptic

connections serve to share this information with other neurons.

nucleus axon

synapse

dendrite

synapse

Figure 3. Biological inspiration for neural networks.

According to Hebb [38], when an axon of cell A often excites or contributes to the

firing of another cell B, internal processes cause cell A to become more efficient at

causing cell B to fire. His observation has become the foundation for neural network

model learning. This observation is evident in a basic form of neural network called

the perceptron model.
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Rosenblatt’s [73] perceptron model of a neuron forms the basis of a multilevel

graph structure that supports machine learning. Figure 4 shows a diagram of Rosen-

blatt’s simple perceptron model. Rosenblatt’s perceptron provides a mathematical

model that demonstrates a simple processing unit that receives inputs, performs pro-

cessing, and produces outputs for the network. In addition to inputs and outputs,

the model also contains potential and an activation function.

inputs

NET potential

w1

w2

w0

x0=1
x1

x2 Σ y1
inputs

activation 

function
output

wn

…

x2

xn

Σ y1

Figure 4. Rosenblatt’s simple perceptron model [73].

In the perceptron model above, xn represents the presynaptic stimulus, wn is the

synapse stimulus concentration (aka “weights”), and wnxn demonstrates the postsy-

naptic action potential for each dendrite. Individual weights demonstrate Hebbian

learning as the weight magnitudes directly induce whether or not the forward neuron

fires. Thus, the action potential of all of a neuron’s dendrites is the summation of

the appropriate products (Equation 19). The bias term, x0, is necessary to allow the

network function result to shift away from the origin.

NET =
n∑
i=0

wixi (19)

The perceptron activation function determines whether the neuron axon outputs

fire or not. In Rosenblatt’s simple perceptron, the activation function is a hard limiter

as shown in Equation 20. Common activation functions include the sigmoid and
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hyperbolic tangent functions [28] shown in Equations 21 and 22 respectively. These

functions have the advantage of allowing the neural network to generate nonlinear

functions as shown in Figure 5.

y(x) =

 1 if NET > 0

0 otherwise
(20)

y(x) =
1

1 + e−x
(21)

y(x) =
e2x − 1

e2x + 1
(22)
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Figure 5. Plots of sigmoid and hyperbolic tangent activation functions.

The perceptron model provides a mechanism for learning by adjusting the var-

ious network weights. Although numerous perceptron-based neural network imple-

mentations exist, this discussion focuses on only the FNN. The FNN places addi-

tional connectivity limits from lower layers to higher layers only, hence generating

a “feedforward”-only network. In order to train weight values, backpropagation of

some error representation is necessary. The most common applications for the FNN

are regression and classification.
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Duda, et al. identify several methods of ensuring faster backpropagation con-

vergence of the FNN [28]. They recommend activation functions that are nonlinear,

saturating, continuous and monotonic. Standardization of input features to have zero

mean and unit variance prevents the network from overemphasizing larger magnitude

features. Target values should not exceed the range of possible network output. For

example, a network with a hyperbolic tangent sigmoid activation function should not

attempt to train to target values exceeding magnitude 1.0, because the network is

incapable of reaching the target values causing obvious error.

Duda, et al. [28] recommend choosing the number of hidden units to cause the

number of weights in the network not to exceed n
10

, where n is the number of training

samples. They indicate that although some have enjoyed success with more hidden

nodes, a “principled approach” is to initially use more hidden nodes, and then prune

weights to the point of elimination for insignificant associations. The authors also

describe techniques for determining learning rates and the potential advantages of

momentum.

Kivinen and Warmuth [45] discuss matching network loss and activation functions

to allow faster convergence in neural networks with multidimensional outputs and no

hidden layers (generalized linear regression). They also suggest that the optimal

network learning rate, η, also depends on the loss function. They identify the relative

entropy function (see Equation 23) as the appropriate matching loss function for the

sigmoid activation (or transfer) function.

Lσ(y, ŷ) =
k∑
j=1

yjln
yj
ŷj

(23)

Figure 6 shows a sample multilayer FNN with perceptron nodes. This particular

sample has input, (single) hidden and output layers. Multiple hidden layers may exist,

but some claim the use of a single hidden layer is sufficient for approximating any
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continuous multivariate function based on Kolmogorov’s theorem although Girosi and

Poggio disagree [36]. They indicate the Kolmogorov network is not a parameterized

representation as neural networks and the inner functions in Kolmogorov’s theorem

are not smooth causing the approximated function to not be smooth, which makes

generalization more difficult. They also claim that Kolmogorov’s theorem “cannot be

used by itself in any constructive way in the context of networks for training” [36].

perceptrons 

(neurons; 

nodes)

x1 y1

weights

input 

layer

hidden 

layer(s)

output 

layer

x2 y2

Figure 6. Sample neural network with hidden layer.

The FNN model is not without limitations. The nodes in the model do not

necessarily represent any specific information at all, which makes interpretability and

reuse of portions of the network impossible. This representation also makes intuitive

validation of FNN performance difficult, because the only predictable model output

is the final result. If environment stimuli change, attributing potentially degraded

performance to any specific cause is difficult and requires periodic retraining and

analysis.

For example, Figure 7 shows a neural network that takes two inputs (xi), has five

hidden layer nodes (nj), and a single output (y1). When fully trained, the operator
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cannot deduce interpretable information from any particular node regardless of overall

model optimality. For instance, a trained network to identify red circles inevitably

does not represent “redness” or “circle-ness” at any particular node, but rather only

represents “(red circle)-ness” at node y1. The conceptual representation for “redness”

may be local to a specific node although more likely spread out over a larger group of

neurons possibly encompassing the entire model. The lack of fine-grain informational

representation prohibits any other network from utilizing a trained portion of the

network even if the network performance is optimal. Reuse of a portion of a network

requires complete retraining, a wasteful practice.

x1

n1

n3 y1

n2

x2

n3

n5

y1

n4

Figure 7. Sample neural network for context discussion.

The network in Figure 7 is also useful to discuss the likely overuse of weighted

associations in the FNN. For example, if n1 and n2 adequately represent “redness”

and “circle-ness”, then the cross associations between x1 and n2 and also x2 and n1

are most likely unnecessary as features contributing to one characteristic likely are

independent of the other. Duda, et al. recommend a pruning solution to address this

scenario [28], but effective pruning is impossible if the network coalesces redness and

circle-ness into the same set of nodes. The number of weights and the number of

training samples most commonly influence network structure decisions, which further

emphasizes this problem.
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2.2.3 Decision Trees.

Unlike the previous techniques, decision tree (DT) models are more intuitive,

bearing strong resemblance to the classic “20-questions” game. As a more natural

classifier for nominal data, the root “node” of a directed tree structure splits the data

into smaller subsets with a question whose response space is exhaustive and exclusive

[28]. Determining precisely which features to use in splitting is a significant concern

with this model and the DT can use the same feature for multiple splitting decisions.

A subset is pure if it only contains samples from a single class.

Reaching a leaf node results in a classification, while non-leaf nodes present a

series of splitting questions. In the event of a pure subset, the decision to make a

node a leaf is trivial, but impure subsets require a judgment between accepting error

or further tree expansion. The decision rules of large trees are often complex and

require tree reduction to simplify.

Duda, et al. identify interpretability as a major benefit of DTs over neural networks

[28]. The role of every node in a properly reduced tree is much clearer and the

decisions reached at the leaf nodes are more obvious. As previously stated, the only

node function in an FNN that is obvious is at the output layer and the information

represented at other nodes is highly questionable.

Figure 8 shows a DT that classifies red circles. In this trivial example, the root

queries whether the sample is red and the right subtree queries whether the sample is a

circle. The leaf nodes assign distinct classes of membership to each sample. Each node

has a clear interpretation unlike the previous FNN model. In a similar application,

the FNN may represent redness in a single node although more likely across several

nodes—even combining concepts like redness and circle-ness in the same nodes. Such

connectedness prohibits substantial pruning as most of the network represents most

of the necessary concepts.
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Figure 8. Sample decision tree for red circles.

Duda, et al. present a generic tree-growing methodology called the classification

and regression tree (CART) [28]. They list six design considerations to address when

building a DT:

• branching factor to use for each node,

• feature to use for splitting a node,

• conditions for deciding a node should be a leaf,

• pruning techniques,

• determining class for impure leaf nodes and

• handling missing or noisy data.

The branching factor of a node is the number of edges leaving a non-leaf node.

Many applications use binary trees (i.e., a branching factor of 2) [57], because they

are both efficient implementations and capable of representing any complex decision

logic.

Determining which features to use for splitting is a practical application of Occam’s

razor, a classic argument for simple solutions [21]. The most concise DT with the same
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decision-making results is preferable to a grossly enlarged tree that adds complexity

and suffers from poorer performance. A concise DT has generally smaller overall

distances from the root to the leaf nodes, which implies that a reasonable goal of each

decision point is to generate descendants with maximal purity, or minimal impurity.

Theoretically, these decision points may utilize multiple features and such trees are

polythetic; DTs that restrict themselves to single features for each decision point

are monothetic. MATLAB’s classification DT implementation considers a random

selection of
√
n features from n total features for consideration as the monothetic cut

variable [57].

Various impurity measures exist, such as entropy, variance, Gini, and misclassi-

fication impurities [28]. In all of these, the impurity of a node N , denoted i(N), is

zero if each subset contains samples from only one class. Obviously, the classes for

each subset are different. In the case where i(N) 6= 0, the impurity is positive with

the highest value occurring when different classes occurring with uniform density in

a subset. Incorporating cost functions can shift decision boundaries as with other

classification techniques.

Equation 24 is a function that calculates the change in impurity of a feature and

corresponding value for the decision point at node N [28]. In this equation, NL is

the left node of the split operation (i.e., descendant), PL is the percentage of samples

that NL contains and i(NL) is the calculated impurity for the NL. The right side

variables follow a similar convention. The best possible decision using this greedy

method is to split on the feature and value that produces the highest ∆i(N). Making

an optimal local decision, however, does not guarantee an optimal global solution, a

common drawback of greedy algorithms.

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) (24)
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The critical performance decision is defining the conditions identified for declaring

a node a leaf. Surprisingly, this decision is even more important than the impurity

function chosen in regards to classifier accuracy according to Duda, et al. [28]. Train-

ing DTs is quite similar to neural networks, because continual node splitting leads to

overfitting of the data and the typical loss of generalization while stopping too soon

is essentially underfitting. Techniques for determining when to stop include threshold

comparisons of split impurity reduction or establishing a minimum number of samples

a node can represent. Other statistical methods exist as well, such as testing if ∆i is

significantly different from zero, hypothesis testing, and confidence level testing.

Another approach to building DTs is to first build an exhaustive tree and then

progressively prune away leaf nodes, or merge them, until the leaf nodes meet certain

criteria. Instead of splitting nodes to build a DT, pruning has a major advantage

of immunity to the horizon effect, where splitting decisions do not consider future

beneficial splits of descendant nodes because they do not exist yet. As a complete

DT is by definition overtrained, pruning is necessary for generalization.

While assigning class labels to leaf nodes with zero impurity is trivial, leaf nodes

with positive impurity are not difficult to assign either. Assigning class membership

based on the class of preponderance results in lower classifier error. Expanding the

tree to reduce this error results in undesirable overfitting.

Duda, et al. indicate that a major limitation of DTs is computational complexity

[28]. Given several generic assumptions, for n samples and d features, the train-

ing performance is O(dn2 log n) with a classification performance of O(log n). The

classification performance is superior, but the dismal training performance is often

prohibitive for large numbers of samples or features.
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2.3 Malware Naming and Analysis Techniques

Malware naming and analysis is more art than science [10]. The malware research

community consists of numerous disparate organizations and commercial companies.

Overall, this community does not suffer overly adverse effects for not settling on

rigid, industry-wide standards for naming analysis. The potential losses can easily

outweigh the advantages for this industry. While many antivirus analysts may agree

that a specific sample program is malicious, they often disagree on malware names and

the best descriptions for the sample. In many cases, they come to their conclusions

by entirely different analysis processes. This section describes the difficulties the

malware research community has with naming conventions and common malware

analysis techniques.

2.3.1 Naming Convention Problem.

The antivirus research community has demonstrated difficulty in naming newly

discovered malware since its beginning three decades ago. With little motivation to

work together to define a consistent and useful naming scheme, the status quo leads

to confusion between vendors, Information and Communication Technologies (ICT)

staffs, and the general public. Although collaborations among antivirus researchers

are rare (usually only during major virus outbreaks), a universally accepted naming

convention expedites information sharing for the good of end users. Such a stan-

dard simply does not exist even after repeated efforts by industry and non-profit

organizations.

Each vendor has their own local policy that dictates their naming conventions.

Conceding to an industry-wide naming scheme requires the concession of a degree

of autonomy and likely imposes more diligent “busy” work on company analysts.
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Through collaboration among vendors and non-profit organizations a less biased

scheme emerged, but universal acceptance and adherence does not exist.

Some non-profit groups propose different standards, but most omit multiple com-

mon malware types, such as backdoors and downloaders [64]. Arguably, the most

influential standard in the antivirus community comes from the Computer Antivirus

Researcher’s Organization (CARO) [10, 91]. Mitre’s Common Malware Enumeration

(CME) attempts to address the differences in antivirus company naming by establish-

ing neutral identification numbers for vendors to reference in addition to their own

assigned names [64]. Microsoft has also begun touting its malware naming scheme,

which appears to be a simplified version of the CARO standard [63].

2.3.1.1 CARO Naming Standard.

CARO is an informal organization of antivirus researchers from multiple corpora-

tions and academia who collaborate on limited malware research issues. One partic-

ular focus area of CARO is the establishment of a naming standard for new malware

[10]. The general form of malware names under the CARO Malware Naming Scheme

is the following

[type://][platform/]family[.group][.length].variant[modifiers][!comment]

where the items in brackets are optional. As evident, the only mandatory fields are

family and variant.

Much of the emphasis in the CARO standard addresses virus families, but the

guidance is not definitive. Virus families are helpful to researchers, because they

provide a crude measure of similarity between viruses. Similar viruses likely have

similar infection capabilities, defenses, and require similar disinfection techniques and

tools [10]. Reuse of previous work in any form is highly desirable and accelerates

production and responsiveness.
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One problem with the CARO naming scheme is that antivirus vendors are under

no firm requirement to adhere to the standard [10]. Participation is strictly voluntary

and as a result, no vendor product is fully compliant with the standard. Furthermore,

some researchers criticize the standard [10] for various reasons, but many reluctantly

abide by the overarching spirit of the naming scheme.

Other problems are more semantic in nature. For instance, Win32/MyDoom.BQ

and Win32/MyDoom.ED are syntactically correct names based on the CARO stan-

dard [10], but different vendors may use these different names based on local policies,

which results in a misnomer or at least an inconsistency. In most cases, antivirus com-

panies refuse to change their assigned names after publishing the information to the

media or online databases, because of the additional confusion caused and potential

loss of credibility.

CARO presents the following prioritized list of malware types and definitions [10]:

1. Virus: “program (or a set of programs) that can replicate itself recursively”

2. Dropper: “malware that does not replicate itself but which releases self-

replicating malware”

3. Intended: “malware written with the obvious intent to write a virus but which

fails to replicate”

4. Trojan: “malware that does not even try to replicate itself but which performs

some intentionally destructive action, without correctly warning the user”

5. PWS: program whose primary purpose is to “steal passwords”

6. Dialer: “program that installs itself in the chain of programs invoked when the

computer is establishing a dial-up connection. The purpose of such a program

is to force the connection to the Internet to go through a particular premium

phone number.”
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7. Backdoor: “program that allows access to the machine on which it has been

installed, access that circumvents the legitimate login authentication procedures

for that machine”

8. Exploit: “way of bypassing the security of a program or an operating system”

9. Tool: “program that is not dangerous to the user who runs it, but that can be

used to produce malicious programs or to perform malicious actions”; examples

include virus construction kits, password cracking and other attacker tools

10. Garbage: “various programs that do not perform any meaningful action (usu-

ally due to bugs) and do not even try to be viruses (or they would be classified

as ‘intended’)”

Leveraging subclass information from the antivirus community is critical for incor-

porating their expert findings into academic research. The CARO standard attempts

to address some glaring issues, such as how to assign a sample to a specific malware

class given that it exhibits characteristics common to multiple types. The above list

is in order of precedence of “worst types” with virus being the worst. As a simple

example, if a program steals passwords and replicates, its class is virus according to

a strict interpretation of the standard.

The above list is also the only allowable types of malware according to CARO.

They do not include several commonly accepted categories of malware, such as worms,

keyloggers, spam, adware, spyware, and phishing scams. Bontchev [10] indicates that

the worm category is not in the standard, because antivirus researchers do not col-

lectively agree on a precise definition for it. To avoid ambiguity, the CARO standard

omits the category and instead advises researchers to include appropriate information

in the comment field of the scheme. Other types are omitted, because of inadequate

definitions and CARO’s interpretation of applicability to antivirus scanners. The
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standard also refers to the popular keyloggers as pws, or password stealers, but such

programs can steal more information than just passwords. In time, CARO may add

more types to the acceptable list.

As a practical example, the Symantec named W32.Wargbot is a worm that opens

an Internet Relay Chat (IRC) backdoor on a system [67]. The analysis report con-

tinues calling the same specimen a Trojan also. According to the CARO standard,

the class is virus, because worms replicate and the standard does not currently allow

for the more specific category worm.

Another interesting point is that the Symantec name for W32.Wargbot does not

include the type field in the name at all. The name W32.Wargbot is likely what their

scanner returns when the virus is found—not necessarily the full name of the virus

as defined at Symantec. CARO only requires scanners to report the family name

when it detects malware. Vendors are free to omit the malware type even though

this information is likely the most important to antivirus customers. Customers must

determine the malware type themselves by scouring antivirus companies’ websites.

The CARO naming scheme precedence may simplify the naming for the antivirus

research community internally, but not for customers. Users of antivirus solutions

would obtain more information by knowing that a particular infection involved a

backdoor or pws (or keylogger) rather than the generic term virus. The former di-

rectly implies an obvious sequence of remediation steps to execute immediately after

disinfection to ensure confidentiality; the latter does not directly imply any necessary

follow-up action other than disinfect and remove.

The CARO naming scheme type is also a mixture of malware propagation meth-

ods and payloads, but the standard calls for a single, overall type. If vendors do

not provide the additional information in the comment field of the name, end users

must search elsewhere for relevant threat information. Propagation (or replication)
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methods describe how malware spreads across systems and networks, not other mal-

ware functionality. Swain [86] identifies three major types of malware for Symantec,

Trojans, worms and viruses. Trojans are non-replicating [86, 91], while worms and

viruses propagate [64, 86, 91] with the distinction being that worms do not require

user interaction to spread [91].

Malware “payload” refers to the functionality of the malware in terms of adversary

utility or victim annoyance. Szor [91] describes several different types of payloads.

While one identified payload, “no payload”, is relatively innocuous except for its

propagation, other payloads can overwrite data, destroy hardware, deny service, steal

data or provide unauthorized remote access to an adversary via a backdoor.

2.3.1.2 Common Malware Enumeration.

Mitre establishes a neutral identification number for antivirus vendors to include

in their malware descriptions to alleviate confusion caused by multiple vendor names

to describe the same malware artifact [64]. The CME intent is to address “pandemic”

malware threats by issuing common identifiers to those limited samples that experts

project to have widespread impact. With a common label for these samples, in-

fected organizations can better understand the situation and execute the appropriate

response actions.

Mitre also offers definitions for the following malware categories in the context of

the CME [64]:

1. Virus: “a program that infects a computer by attaching itself to another pro-

gram, and propagating itself when that program is executed”

2. Worm: “a computer program that can make copies of itself and spread itself

through connected systems and using up [sic] resources in affected computers

or causing other damage”
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3. Trojan: “computer code that does something that is not expected by the

executor of the code”

Although the above definitions are reasonable to experts in the field as they loosely

correlate to the industry “standard” of propagation methods, they are grossly in-

complete by themselves. The lexicon does not address malware payloads, such as

backdoors, keyloggers, and rootkits. The manner of malware propagation implies little

about its functionality. An annoying virus that pops up a window every morning

after login saying, “Happy Birthday”—albeit highly annoying—is not as significant

a threat as a backdoor or keylogger. Although not its primary motivation, a primary

limitation of this lexicon as a standard is the lack of payload identification.

The now defunct CME list did not last long even though it improved coordination

during widespread outbreaks. In total, Mitre assigned only 39 identifiers over a two

year period and has since archived the CME list and diverted their efforts to secure

software development practices [64]. They cite that in the end of 2006, malware

attack patterns changed to target individual users more than global threats and the

service is no longer necessary [64].

In the previous example of the Symantec named W32.Wargbot, the CME iden-

tification number is 762 (referred to as “CME-762”). Table 4 shows the different

names that antivirus vendors use when referring to CME-762 [64]. The table entries

reveal that no vendor that explicitly included the type field from the CARO Malware

Naming Scheme followed the standard, because the malware type should be virus

according to the Symantec description [67]. Familiarity with the industry naming

standards may lead one to believe that several vendors imply virus as the type by in-

cluding the platform without any other explicit type information (virus is the default

in the absence of other type information). Collectively, the antivirus vendors assign

all three propagation methods to this single sample, which is a logical conflict with
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the CARO standard as a virus cannot also be a Trojan [10]. The malware families

identified also demonstrate a lack of continuity across vendors with few having even

similar family names. A few vendors categorized the malware type as a backdoor,

which is likely a more useful description for customers.

Table 4. Antivirus vendors names for CME-762.

Vendor Name
Avira Worm/IRCBot.9374
Authentium W32/Ircbot.TT
CA Win32/Cuebot.K!Worm
ClamAV Trojan.IRCBot-690
ESET Win32/IRCBot.OO
Fortinet W32/Graweg.A!tr.bdr
Grisoft BackDoor.Generic3.GBB!CME-762
Kaspersky Backdoor.Win32.IRCBot.st
Microsoft backdoor:Win32/Graweg.B
McAfee IRC-Mocbot!MS06-040
Panda W32/Oscarbot.KD
Sophos W32/Cuebot-M
Symantec W32.Wargbot
Trend Micro WORM IRCBOT.JK

2.3.2 Analysis Techniques.

Malware categorization is a product of functional analysis of samples. Categoriza-

tion often requires visibility into the operating system (OS) application programmer

interface (API) calls of the program. In order to accomplish certain tasks, such as

interface with the network or file system, a program usually calls the respective OS

API. In general, the two major approaches for obtaining this information are static

analysis (aka, whitebox or clearbox testing) and dynamic analysis (aka, blackbox

testing). Static analysis does not require central processing unit (CPU) emulation

[87, 91]. Dynamic analysis requires CPU emulation or actual runtime observation.

Fortunately, nothing prohibits mixing between the two techniques and many analysts
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use a hybrid of the techniques or whichever method they believe is more advantageous

to the specific task at hand.

2.3.2.1 Static Analysis.

Static analysis takes an inside-out approach focusing on a thorough examination

of the program instruction disassembly to determine its capabilities. A more uni-

versal example of this approach is to determine the functionality of an automobile

by examining its parts (i.e., classic reverse engineering). Static analysis of malware

normally requires the use of a debugger, but purists might argue that only a disas-

sembler is necessary. Although a slight misnomer, most analysts performing a static

analysis “step”, or execute the program one instruction at a time, through certain

code sections to verify functionality or to examine a particular defense. Technically

speaking, this “stepping” is execution of the program, which is the approach of dy-

namic analysis. The primary difference is that the analyst is examining the internal

instructions to determine the function, not the external behavior.

Malware researchers conducting static analysis benefit greatly from taking detailed

notes concerning how they unpacked packed executables and disinfection techniques

[91]. Most of the time malware authors reuse the same packing tools and do not make

new packers, which simplifies the process for analysts. Also, cleaning techniques are

similar for samples from the same malware family [10, 91]. Keeping good records

prevents analysts from performing tedious steps again and allows them to refine their

standard analysis approach.

Normally, the first step is “unpacking” of the program’s real instructions into

memory, which may require extended periods of time during static analysis if the

packer is new or advanced. Antivirus researchers normally make a modified version of

the program that is not packed. Nearly all further analysis uses the unpacked version
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of the malware instead of the original sample, because reinitializing the program in a

debugger is faster and justifies the few minutes taken to modify the executable.

For many packers, such as the popular packer Ultimate Packer for eXecutables

(UPX) and its many variants, the unpacking process is almost trivial taking an ex-

pert analyst just seconds to unpack. One reason a malware author would use such

a tool even if it only stops a human expert for a few seconds is to prevent an au-

tomated antivirus tool from making an easy heuristic signature match, instead of

forcing analysts to manually generate a new signature. According to statistics from

ShadowServer [79], a non-profit organization that analyzes and reports on malware

and botnets, UPX variants account for over 50% of all the packers used in the samples

observed from June 2010 to June 2011.

One of the most difficult tasks in static analysis is determining that the disassem-

bly is correct [65]. Many researchers overlook this, assuming that the true disassembly

is available and then performing analysis on a “pristine” disassembly. Research mak-

ing this assumption includes [14, 44, 85] and many others described in a recent survey

paper [80]. Methods to obtain a clear disassembly include manual verification and

performing an execution trace in a debugger—neither of which are conducive to au-

tomated solutions by attacker design. Execution traces can be quite slow especially

when facing malware anti-emulation techniques [91]. Today the unpacking process is

simple, because most available packers are not too advanced [91]. Nothing prohibits

this situation from changing at a moment’s notice, which would cause ripple effects

across the research community. Packers can encrypt portions of the executable until

needed while simultaneously shuffling them around in memory. Disabling this defense

is also not trivial depending on the structural implementation the packer uses.

After the program is completely unpacked, the process of identifying the program’s

functionality begins. This portion of the process becomes extremely “artistic” with
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each analyst examining the program based on their own personal process, experience,

and intuition. For example, some prefer to read through the instructions periodi-

cally making notes and rarely execute any instructions. This particular technique

is effective, but analysts must keep mental track of state data, which is difficult in

large programs. Others scan the program for interesting instruction sequences, set

breakpoints and execute the program until it pauses at the breakpoint, where they

can examine the program state.

One major analyst goal is to find the OS API calls and determine the program

functionality based on sequencing and presence. A program that does not invoke

network API calls cannot function as a backdoor. A program that has API calls

to monitor keystrokes and to write to the disk may possibly be a keylogger, or pws

according to CARO [10]. By setting breakpoints on API calls to initialize network

sockets, the analyst can quickly observe the details of the network connection, includ-

ing the remote host name or Internet protocol (IP) address. All of these observations

are critical pieces of information in determining the malware type.

Analysts can observe all pertinent functionality of a fully unpacked program as-

suming they have all of its components. If the analyst is missing a key, custom

dynamic-link library (DLL), the analyst cannot observe or run the entire program.

This problem can cripple dynamic analysis, because necessary program code is miss-

ing. The missing code may contain significant portions of the program’s functionality.

In the previous examples, if the DLL contains the keystroke monitoring API calls,

but analysts do not have a missing DLL, they may categorize the sample incorrectly.

However, analysts can conduct a partial static analysis of the functionality present in

the available program components, but this approach makes bold assumptions.

Static analysis generally requires less special hardware than dynamic analysis,

because ideally the analyst does not “execute” the code. As described earlier, ana-
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lysts may step through portions of the code, but this technique may require access

to the same special hardware associated with dynamic analysis depending on the

functionality of the code.

Static analysis requires discipline and skill in order to be effective. Simply skim-

ming the disassembly is not adequate, because analysts have no way of knowing that

they are seeing the true disassembly [65]. Malware defenses include subtle tricks to

prevent antivirus researchers from “cheating” by taking too many shortcuts and keep

the “game” interesting. On the other hand, a team of disciplined and skilled analysts

theoretically can reverse engineer any software program, because the program must

expose the true instructions prior to the computer attempting to execute them. Oth-

erwise, the program simply crashes and does nothing except embarrass the author

and possibly annoy the victim.

2.3.2.2 Dynamic Analysis.

Dynamic analysis is the complementary technique to static analysis. Instead of

examining the internals of the program instructions, it does not even consider such

a low-level detail. Dynamic analysis focuses on the sample’s interaction with its

external environment for categorization. If the program exhibits a particular behavior

consistent with a specific malware type, then it likely belongs to that category.

This blind assumption is arguably the greatest weakness of dynamic analysis.

While static analysis’ main weakness is the inability for analysts to know they are

examining the correct and entire disassembly [65], the dynamic analyst can never

know if they observed the sample for a sufficient duration. With so many malware

samples exhibiting behavior of waiting until a certain date (à la Michelangelo virus),

this assumption is simply not true.
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Special environments might alleviate this concern by advancing the virtual clock

at a greatly accelerated rate, but they assume samples cannot detect this activity

by observing how much time elapsed between processor cycles (or even OS context

switches). Tactically, if a sample is advanced enough to detect this type of obvious

analytical behavior, it will also choose to mask its true function prolonging its time in

the wild. Ultimately, clock acceleration does not guarantee that the analyst witnesses

the true capability of a particular sample.

Dynamic analysis generally requires more resources than static analysis, but dif-

ferent implementations exist depending on the level of fidelity required. Simulated

environments can provide pseudo-infrastructure to allow the malware to execute.

“Sandboxing” also provides self-contained environments that encourage the sample

to execute.

Simulated Environment. To fully analyze malware in action, an isolated,

simulated network environment is often necessary. One such implementation involves

having actual hardware or virtual representations set up in a realistic network config-

uration. This environment must allow for simple traffic capture and analysis as this

becomes a critical component of the entire analysis process for monitoring network

traffic. An IDS is beneficial for testing samples against known signatures when they

operate on the network. Some malware variants attempt to exploit critical network

services as part of their propagation or payload, such as worms.

This environment is a simplified simulation of enterprise network resources. Major

internal services include a domain name server (DNS), domain controller, and mail

server. Other network components that malware may target are web and file servers.

The environment can simulate all services virtually on one system, if a single system

can handle the required bandwidth.
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Traffic analysis with a network sniffer is a critical component of the dynamic

analysis environment. It allows the analyst to identify quickly any domain names the

malware attempts to resolve and nonstandard protocol use. Some malware attempts

to resolve common websites like Yahoo and Google in an attempt to verify network

connectivity before attempting to contact its own command and control (C2) server.

Many of these network anomalies are decent malware indicators and traffic analysis

techniques help to quickly identify them.

The major reason to simulate this infrastructure is to observe what the malware

will do in a realistic environment. If the malware sample attempts to resolve a

domain name and establish a web connection to its C2 server, the environment needs

to include at least a mock DNS and a mock web server. The analyst can add a

resolving entry for the requested domain name pointing to the mock web server.

When the malware connects to the mock web server to request a page, the observer can

analyze the network traffic for anomalous communication patterns for potential IDS

signatures. After deploying any potential signatures, the company can proactively

scan its networks for instances of the malware.

Another noteworthy point is the fact that malware families tend to have strong

similarities possibly including communication protocols. Developing custom signa-

tures for previously unknown malicious artifacts may not only identify the same arti-

fact but also close variants to it possibly within the same family. Furthermore, in the

case of polymorphic viruses, which change themselves so dramatically during propa-

gation that antivirus signatures are difficult to generate, the underlying functionality

and communication methods may be quite similar allowing for signature re-use. In

these cases, a custom IDS signature proves absolutely essential.

The analyst stations must also employ some protective measures as well. Nearly all

antivirus researchers highly recommend examining malware in a virtual environment
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that enables quick restoration of the system to a pristine state [91]. After analyzing

a specific sample, the analyst should revert to a virtual image or re-image the system

entirely and the virtual environment greatly simplifies this process.

In addition to protecting the analyst station, the system also needs tools that

provide visibility into low-level malware actions, such as the free program Process

Monitor [75]. This tool logs all registry and file system accesses. Other tools, such as

netstat, dump all network connection data and the processes associated with them.

Discrepancies in the locally observed data on the analyst station and the network

sniffer are possible indications that malware may be present.

Sandboxing. Sandboxing has quickly become a phenomenon, even though

it does not address all issues of traditional dynamic analysis. Several companies now

develop sandboxing technologies with various options for online and local analysis.

Online analysis requires users to upload the files in question to a website and the

analysis engine returns a standardized report normally within a set runtime duration

specified by the user. Local analysis allows the user to run the same analysis engine

on a user network.

Sandboxing has some advantages over the simulated environment described above.

Sandboxes employ a technique called API “hooking”, which allows the environment to

intercept API calls. As such, they have the capability to report all “hooked” API calls

that the sample attempts. These environments allow the malware to gain access to

real external services, like DNS and other Internet services, which can be dangerous.

Normally, the runtime duration allowed by the online analysis is quite brief, which

presents an obvious limitation. Examples of popular commercial sandboxing solutions

include Norman Sandbox [68] and Sunbelt’s CWSandbox [84].
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2.3.2.3 Antivirus Heuristic Scans.

Antivirus heuristic scans are certainly worthy of note, but limited in effectiveness

for large enterprises specifically targeted by threats. Heuristic scanners key on in-

formation typical of a malware type and provide an alert if the file looks suspicious

enough. Antivirus vendors closely track statistics based on specific program charac-

teristics, such as file size, evidence of obfuscation, the number of program sections,

section alignment, executables running as services, and the import of specific libraries

[72]. They may also have signatures that represent general code sequences to accom-

plish a particular task, such as Symantec’s Bloodhound technology [87]. With generic

enough signatures, they deduce sequences of suspicious code.

They use this information as features for their heuristic scanners. Unfortunately,

these scanners tend to ship with either insensitive settings or malware authors test

their newest products against them before infecting victims. From a practical stand-

point, they are not overly effective for finding new or modified malware [14, 15]. Nor-

mally heuristic scanners cannot be run independently of the main product signature-

based engine.

2.3.2.4 Multiscans.

Multiscan services are popular as well, because they offer antivirus scan results

from numerous vendor tools at the same time. The primary limitation of such tools

is the infeasibility of even a home user uploading all executables for scanning period-

ically. Multiscan services also do not necessarily have the most optimal configuration

for each antivirus product listed. This solution does not scale well to enterprise

customers and often has legal limitations as well.
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2.3.3 Detection.

Malware detection techniques also fit into static and dynamic analysis categories.

Dynamic detection requires samples to execute in order to observe certain behaviors,

while static methods rely on discovery of specific structural aspects of the program

which may only be observable after a certain period of execution, such as after the

unpacking process.

2.3.3.1 Static Analysis Techniques.

Academia, focused research groups, and industry have published a wide variety

of static analysis techniques to detect and analyze malware. Static analysis involves

looking at the executables in either packed or unpacked forms and examining the

file contents or structure. File contents generally range from simple text searches to

advanced techniques for finding character string matches [16] to regular expression

matches [15, 16]. Files structure also includes examining program semantics, such as

control flow graphs [9, 16].

Christodorescu and Jha [14] highlight difficulties commercial products have with

handling simple obfuscation techniques, such as nop (a “no-operation” assembly in-

struction) insertion and inserting unconditional branches (opaque predicates as de-

scribed in [19]). In their test, they apply these transformations randomly to known

malware samples that three commercial antivirus products successfully detected. The

commercial products tested are Norton Antivirus 7.0, McAfee VirusScan 6.01, and

Command Antivirus 4.61.2. After transformation, their findings show that all three

antivirus products failed to recognize ten unique mutations of the malware samples.

Although they apply their obfuscation techniques to a limited sample of only four

malware artifacts, the results are reasonable and likely scale.
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They build a detection tool called static analyzer for executables (sic) (SAFE) [14],

which takes a control flow graph as input and a malware automaton. SAFE examines

the control flow graph for matches to the malware automaton, and it responds with

the code sequence matching the pattern or that it found no match. They also examine

how SAFE responds to normal applications based on a limited sample of four different

programs. In their limited tests, they observe no false positives or negatives. Moser

[65] identifies weaknesses with this method as it relies on obtaining a clean disassembly

with which to construct the control flow graph.

The research of Christodorescu and Jha [14] is promising, but they cite perfor-

mance as a significant weakness. In their tests, they develop the control flow graphs

at load time, which takes approximately 5 seconds to build and another second to test

against the small malware samples. They do not include performance data for other

programs used in their tests, which imposes additional performance penalties. Ana-

lyzing much larger office productivity programs will undoubtedly take much longer.

The annotation process is much larger against the 1 MB Apple QuickTime Player

with performance reaching 800 seconds. The detector process against QuickTime

Player took an additional 161 seconds. Limitations on the ability to automatically

unpack malware samples will also decrease overall performance. Assuming average

annotation and detector performances of 16 s and 2 s, a small system containing ap-

proximately 10, 000 unique executables will likely take 50 hours to scan fully. While

Moore’s law may have substantial impact on the original performance findings for

present-day applications, this method has additional weaknesses as Moser identifies

[65].

Christodorescu and Jha [15] examine other antivirus product detection rates against

different types of code obfuscations. The authors apply four code obfuscations to eight

Visual Basic malware samples. Although not detailed here, the results show that each
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antivirus product had a different false positive rate (FPR) against various obfuscation

techniques. The group generally performs well against variable renaming, but much

poorer against code reordering, hexadecimal encoding, and garbage insertion. The

authors use correlation calculations between signature lengths and false negative rate

(FNR) as key information in their algorithm.

In partnership with Carnegie Mellon, Christodorescu and Jha [16] analyze instruc-

tion semantics to detect malware. Their technique analyzes executables and uses the

Ida Pro disassembler to generate the control flow graphs. Although the authors

identify limited application against some obfuscation transformations, the product

of this research appears robust against obfuscations. Reported performance results

indicate that the detection process will take 1 to 3 minutes against relatively small

malware samples, which exacerbates the overall performance problem in the scenario

highlighted above.

Christodorescu, Kidd, and Goh [17] present research concerning string analysis for

executables and describe a prototype program implementing their research. This re-

search highlights the information available to the analyst by harvesting strings from

binaries. In particular, strings found inside binaries at specific locations can lead

analysts to discover undocumented program features and communication with the

program’s environment and remote systems. The working product of this research

works with the Ida Pro disassembler to obtain string data references and disassembly.

From the references and disassembly, their prototype considers the strings and the

program manipulations of them ultimately revealing the final string values with some

limitations. Many malware implementations do not contain significant string values

even after unpacking. Instead, these samples “build” the final string values during

runtime, which the authors’ technique should detect. Simple string searches through
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a binary using a tool such as streams [74] would not find these types of strings.

The authors’ technique requires more overhead and specialized software, though.

Most of the Christodorescu published research [14, 16, 17] assumes that a correct

disassembly of the malware samples is available, which Moser identifies as a signifi-

cant weakness [65]. In the remaining research paper [15], the malware samples tested

are Visual Basic applications, which an interpreter translates to machine language

immediately prior to execution. This assumption is interesting considering the au-

thor’s discussion of the “obfuscation-deobfuscation game” between malware authors

and researchers [14]. Such assumptions cause problems when dealing with programs

that keep code and data protected until needed. In such cases, code or data might

remain obfuscated until needed, then re-obfuscated immediately after use [49]. The

Christodorescu research uses relatively slow methods to generate the disassembly and

control flow graphs, which reduce its applicability to obtaining SA in tactical situa-

tions.

Szor [91] describes many defensive strategies used in malware. He classifies many

malware defensive strategies and discusses many challenges that the antivirus commu-

nity faces when reverse engineering malware applications. One major defense strategy

he describes is anti-emulation, where malware attempts to consume major amounts

of system resources, such as nested loops, during unpacking routines. Combined with

debugger detection strategies, this may cause debugger traces to simply fail or take

exorbitant amounts of time to complete as resources become exhausted.

Echoing similar information, Eilam [30] describes the scenario from a general

reverse engineering perspective. He describes basic and advanced software reverse

engineering concepts in his book. He also details anti-disassembly and anti-debugging

protections as well as malware reversing and the difficulties faced by malware defensive

strategies.
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Sung, Xu et al. [85, 101] use statistical techniques to analyze similarity between

malware enhanced with more obfuscations and the original samples. The authors

develop a prototype called Static Analyzer of Vicious Executables (SAVE) that ex-

tracts API sequence calls out of binary executables. They compare the extracted

sequence to sequences of known malware. In particular, they use the Euclidian dis-

tance, sequence alignment, cosine measure, extended Jaccard measure, and Pearson’s

correlation measure as similarity measures. The authors claim that the underlying

assumption of this research is that specific malware samples execute a “sequence of

malicious API calls”. An underlying assumption not stated by the authors is that the

tools associated with their technique can always provide a clear disassembly. Reliance

upon such an assumption causes problems given that defensive techniques described

earlier are relatively simple to implement.

Xu [101] presents performance comparisons between SAVE and SAFE, which

demonstrates the previous statements made about the overhead of SAFE. On the

other hand, Xu claims that SAVE is 100 times more efficient than SAFE and even

demonstrates analyzing Microsoft Word’s primary executable winword.exe (unknown

version), which is approximately 10 MB in size, in approximately one-half of a second.

Erdélyi [34] promotes clean booting as the best technique for detecting stealthy

malware. This straightforward idea is still common today, because it denies the mal-

ware the ability to run and hide itself. The author states that clean booting an

NT-based system is difficult, because the OS loads several low-level drivers even in

safe mode. If one of these low-level drivers is malicious, the system will activate it

possibly allowing it to evade detection. Other variants of this technique exist, such

as clean booting from a bootable Linux partition or disk and then mounting the New

Technology File System (NTFS) file volume for analysis.
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Weber, et al. [100] develops a tool called Portable Executable Analysis Toolkit

(PEAT), which helps in the analysis of malware. PEAT examines static portions

of the file and provides warnings based on what it observes. For instance, it issues

an alert when it sees a strange program entry point, like one in the .reloc section

instead of the typical .text section. PEAT also calculates instruction frequencies and

patterns, register offsets, jump and call offsets, entropy of code sections, and code or

American Standard Code for Information Interchange (ASCII) code probabilities.

Moser, et al. [65] argue that a limit exists to the effectiveness of static analysis

to detect malware. They introduce obfuscations called “opaque constants” which are

techniques that obscure control flow and data accesses. These obfuscations prevent

automated tools from generating pristine disassembly of instructions. The authors

believe that dynamic analysis techniques address the shortcomings of static analysis

and that static analysis alone is not reliable for classifying malware.

Bergeron, et al. [9] present a method of “static slicing” to detect malicious code.

The authors claim that detection of malware requires a three-step approach of dis-

assembling the executable, transforming the resulting disassembly to a high-level

representation, and finally applying static slicing. The authors comment that they

rely on the “excellent” disassemblers which are commercially available, but did not

refer to the difficulty of obtaining a true, clear disassembly. They use program trans-

formations to generate a higher-level representation, such as stack elimination and

identifying function parameters. The result is an assembly-like representation, in-

stead of a source code representation. Static slicing requires control flow and data flow

graphs. Slicing results appear to capture system calls and the preceding assembly-like

instruction sequences that affect call parameters.

While previously discussed research of static analysis for malware detection in-

volves program disassembly, Treadwell and Zhou [96] explicitly avoid instruction-level
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semantics by focusing instead on high-level program characteristics, or anomalies.

They identify seven specific anomalies in their research:

• use of non-standard section names,

• use of common packer section names,

• program entry point does not point to a section identified as code,

• non-zero Thread Local Storage virtual address in data directory,

• DLLs with no export functions,

• limited number of import functions, and

• check of import table for zero ordinal values on delayed loading APIs.

Using these anomalies, they calculate weighted total risk scores using arbitrarily

assigned risk scores for each anomaly. Weights for each anomaly are inversely propor-

tional to the anomaly frequency in non-malware samples. Their sample set consists

of 2,014 non-malware and 144 malware samples. They achieve an overall detection

(true positive) rate of 70.8% and a FPR of 3.872% when the total weighted risk score

exceeds 1.0. Using a threshold of 4.0 for the total weighted risk score, they observe a

detection rate of 29.8% with no false positives.

Rafiq and Mao [72] extract hundreds of high-level program attributes and execute

a feature selection process to determine the most salient features. The following list

describes some of their more prominent features:

• file size,

• presence of obfuscation,
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• number of program sections,

• use of non-standard section names,

• duplicate section names,

• presence of uncommon sections,

• improper section alignments,

• Browser Helper Objects,

• running as a service, and

• including suspicious import libraries.

Using a naive-Bayes classifier with only the fifteen features selected, they exceed

90% detection accuracy with a 10% FPR. Like Treadwell and Zhou, their feature set

does not necessarily include instruction-level attributes, which avoids the problems

with static heuristics identified by Moser [65].

2.3.3.2 Dynamic Analysis Techniques.

Dinaburg, et al. [23] examine malware detection using hardware virtualization

extensions rather than software and OS virtualization. Their research stems from a

survey of obfuscation techniques of 25, 000 recent malware samples and the plausible

assumption that malware can easily detect common software emulation environments.

With the authors’ technique, analysts can transparently and externally examine mal-

ware. They achieve transparency and externality by hosting the analysis environment

in hardware virtualization, which they demonstrate in their prototype tool Ether. Us-

ing a Xen hypervisor, they run Ether at the privileged-domain level and the guest OS

at user domains. The guest OSs all rely on the hypervisor for access to all hardware,
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but they theoretically cannot detect the hypervisor. Ether can monitor instructions

executed, memory writes, and system calls from the guest environments. Ether also

has the capability to limit monitoring to a specific process running in a guest OS.

The authors cite architectural limitations of their hardware virtualization environ-

ment that allow possible detection based on memory flushing.

Okamoto and Ishida [69] propose a distributed agent approach to virus detection

as well as virus neutralization. In their research, they harvest “self” data consisting

primarily of header information and file metadata. They use autonomous, heteroge-

neous agents which consist of antibody (triage-type) agents, killer agents, copy agents

which replace files with non-corrupt copies from elsewhere on the network, and con-

trol agents. Antibody agents compare files with their respective self data looking

for compromised integrity. Killer agents simply remove files identified as corrupt by

antibody agents. Copy agents replace infected, “killed” files with other non-corrupt

copies from elsewhere on the network. Control agents monitor and control this ad-

vanced antivirus system. The authors test their agent antivirus architecture with

five popular viruses, at least one of which appears to have been polymorphic. Their

system can successfully detect all five viruses even though current antivirus products

at the time cannot detect the polymorphic virus. Their agent-based system cannot

neutralize against two of the viruses, because the contamination extended beyond

the available self data. The authors adapt their system to include more informa-

tion in the self data to deal with that strain of virus in the future. File recovery by

the copy agents is successful against all five viruses tested. The authors admit that

their system can require nearly double the storage space if the expansion of self data

encompassed entire files.

An emerging trend in malware analysis is online automated malware sandboxes

[68, 84, 95]. These services offer detailed analyses of uploaded samples. These services
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typically employ throttling technologies to prevent individual users from consuming

too many resources. For example, Sunbelt’s CWSandbox allows users to upload

compressed files containing 50 samples, while Norman Sandbox only allows single

file uploads. Some of these services also market stand alone products for large-scale

use. The main limitations of these online sandboxes are user throttling, bandwidth

consumption for large samples, analysis time required and non-definitive results. A

previous section describes the functionality of these sandboxes.

These services also do not provide definitive results, except for results of antivirus

scans to which they subject the sample. All of the other observation results are

just raw data, which the user must interpret. Other online services exist that scan

uploaded samples with numerous antivirus products, such as VirusTotal [98]. Like

the online sandbox utilities, these services normally employ throttling technologies

to prevent individual users from consuming too many resources. Also, these types

of services do not scale much past curiosity seeker levels, because of the constraints

of network bandwidth, user throttling and the sheer volume of potential samples. A

major difference between online virus scans and sandbox technologies is that the for-

mer report results from antivirus vendor research, whereas the latter reports general

actions and leaves the identification and classification to the user.

Individual antivirus product vendors also allow for sample uploads to their web-

sites. These services scan files with the vendor’s antivirus product. These services

have the same scalability issues, but provide more definitive answers than sandboxes,

because they report malware findings that the vendor has analyzed and confirmed.

2.3.4 Classification.

Antivirus researchers and companies have their own local policies and procedures

for categorizing malware based on functional analyses and similarities to other known
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artifacts. Other third-party, nonprofit organizations propose industry standards, but

vendor acceptance and adherence to the proposed standards are optional.

In general, most of the industry adopts the intent of the standards, but keep

their autonomy in addressing related internal issues that the standards do not cover.

Therefore, vendors commonly add new malware types to identify unknown samples

if they deem it appropriate. As an example, Avira lists on its website over 60 unique

malware type prefixes [6], which far exceeds the CARO standard of 10 acceptable

types. Most vendors do not publish their naming convention standards, which makes

their local categorization policies difficult to assess.

As previously discussed, antivirus vendors often refuse to change malware names

once assigned, because it generates confusion among users. Likewise when companies

change local policies, they do not recategorize previously analyzed malware, because

it is infeasible given the volume of work required and suffers the same consequences.

Therefore, if a particular vendor initially calls a backdoor sample a Trojan, it will

not reconsider labeling the same sample if it later modified its policy to increase the

precedence of backdoors over Trojans. This observation has substantial impact across

any malware research effort that assumes that all historical antivirus labels are in

compliance of the current vendor naming policy.

2.4 Artificial Intelligence Applications

Published research of AI applications to malware detection dates back to the early

1990s. The most common difference among the published research is the feature

source. The majority use n-grams, which are byte sequences of length n normally

reputed to represent instructions, but may also represent data or program structure.

Although many researchers develop successful classifiers using n-grams [1, 5, 39, 46,

47, 77, 92, 94], a lack of explanation for their successes exist as some admit [46].
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Other common feature sets include program instructions, API calls, anomaly data

and structural information. Particularly, instruction-level information (including API

calls) are elusive data features and obtaining this information can be problematic

[14, 16, 65]. Execution traces take large amounts of time and other approaches make

overzealous assumptions of generating a pristine disassembly to obtain the features

[65].

FPRs are extremely important for malware and intrusion detection heuristic scan-

ners [3, 5, 91], because malware and attack patterns must be observable in a deluge

of normal data. Using a tool with a FPR of 0.1% with 10 real positive samples in

1 million negative samples translates to a set of 1000 negatives with only 10 true

positives (assuming the detection system catches all of them). Gross alert numbers

quickly overwhelm human analysts and operators or worse, condition them to not re-

spond to the alarms. This antipathy renders such systems useless except to establish

an organization’s “due diligence” responsibilities.

The AI application of Kephart, et al. [44, 80] from IBM Watson Research Center

to malware detection involves automated signature extraction for new variants of

known malware samples. This particular research effort focuses on generating unique

signatures based on specific n-grams from the executable based on the probability

of finding the sequence in the malware or a non-malicious program. Although this

research sought an automated solution, it is not an “intelligent” or proactive solution

as it primarily focused on detecting variants of known malware.

Tesauro, et al. [94] from IBM Watson Research Center apply neural networks to

successfully detect boot sector viruses. Due to significant computational and space

constraints as well as a small sample size for training and validation, they use an input

layer, no hidden layers and a single node output layer in their network. This approach

has two major benefits, limiting the number of computations and avoiding overfitting.
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To further address the runtime constraints, they restrict floating point computations

to small integers. They also manipulate the decision threshold boundary to increase

the cost associated with false positives as they cite that a single false positive reading

likely affects thousands of systems.

They train the network with trigrams (3-byte strings) that undergo a unique

feature selection process. Initially, they canvas the entire sample corpus for trigrams

and eliminate all that are common to both the malicious and non-malicious sets.

Moreover, they reduce the list of trigram features to the set where each malicious

training sample contains at least four trigrams. This selection process leads to a

three order of magnitude feature reduction.

Expanding on their previous work, Arnold and Tesauro [5] incorporate a voting

system on multiple trained neural networks. By training multiple networks with

distinct features not used in others (termed boosting), they effectively avoid the major

pitfall associated with heuristic scanners, high FPRs. Their assumption is that these

disparately trained networks rarely produce identical false positives. Szor [91] cites

that the Arnold and Tesauro network research has such a low FPR that Symantec

incorporated it into its antivirus product default scanning.

Luke and Harris [52] investigate using intelligent agents to detect unknown mal-

ware. The authors claim that mobile intelligent agents are “less vulnerable to at-

tack” and have greater visibility and redundancy. Their research considers detection

of viruses during replication and determining similarity between “code sentences,”

presumably a byte representation of a sequence of instructions. They assumed that

the distribution of agents in the network was uniform and that the agents detect

viruses by observing differences between the same types of file. The authors state

that the feature space to examine exhibits a problem in dimensionality, which is why

the authors chose to use Albus’ Cerebellar Model Articulation Controller (CMAC)
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algorithm [2], a descendant of the perceptron commonly used in artificial neural net-

works. CMAC is a lattice Associative Memory Network. They highlight advantages

of CMAC versus standard neural networks, but they report no significant research

achievements thus far.

Using three different feature sources to identify malware, Schultz, et al. [77] test

different data mining algorithms against standard signatures. In their first approach,

they examine information from the portable executable (PE) header as features, such

as import libraries and the number of imported functions from those libraries, with

Cohen’s improved rule learning algorithm called RIPPER [18]. This method requires

unpacking the samples before evaluation to reveal the true imports, but the authors

do not refer to this step. The second approach uses strings found in the binaries

as features, which is again problematic without first unpacking. The third method

captures byte sequences presumably expected to translate loosely to a representation

of instructions. The authors used both the string and byte sequence data with naive

and multi-naive Bayes classifiers. The results of the naive Bayes classifier with the

string features is the most accurate classifier in their tests reaching a detection rate

of 97.43% with a FPR of 3.80%.

Finally, Schultz, et al. [77] concede that encryption (and presumably packing)

obfuscate strings present in the executables, but the solution they suggest makes

bold assumptions. They indicate that an effective method of handling the packing

case is to initially assume that a sample is malicious and then if strings are found

in the program the classifier defaults back to the naive Bayes algorithm. One point

the authors fail to mention is that the attacker has complete access to the malware

sample. The attacker can use any encryption method to make the ciphertext code

look however they want (e.g., one-time pad ciphers) or “stuff” the unpacking area with

byte sequences of their choosing, such as normal instructions from a normal program.
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The unpacking stub overwrites the unpacking area anyway making this almost trivial.

Another bold assumption the authors make is that a sample is malicious if strings

are not present (i.e., a packed executable), but many legitimate programs are also

packed and contain no significant strings.

Abou-Assaleh, et al. [1] uses Common N -Gram (CNG) analysis to classify mal-

ware. The authors examine character n-grams found in executables in order to capture

features associated with the author and tools used to write or compile the code. The

authors make their observations on a small sample size of only 25 and 40 samples

of malicious and benign code respectively. With the prevalence of malware publicly

available, one might question why the authors do not consider a larger sample making

their findings more significant. The authors claim that the character n-gram tech-

nique produced 100 percent accuracy on training data and 98 percent accuracy on

test data, but the test data performance appears to be a best-case scenario.

Kolter and Maloof [46] examine the results of several classifiers on malware detec-

tion via n-grams. Techniques they test include naive Bayes, support vector machine

(SVM), DTs and boosted variants of each. In their experiments, they evaluate the

classifier performance by computing the area under a receiver operating character-

istic (ROC) curve. Their boosted DT model achieved the best accuracy, an area

under the ROC curve of 0.996. The authors cite that identifying why the presence

of some byte strings combined with the absence of other byte strings contributes to

high performance classifiers is difficult.

Research in behavioral classification for Microsoft by Lee and Mody [49] encour-

ages runtime behavior-based automated classification. According to the authors, “Au-

tomatic malware classification is becoming an important research area” [49]. They

state its importance is due to the incredible growth of new malware variants. Lee and

Mody suggest that optimal classifications should come from using results from both
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static and dynamic analysis. They state that “the complexity in extracting features

out of malware is a difficult task,” which has the agreement of others [41, 65, 72].

Using “opaque objects”, they develop semantic representations of objects. They

calculate similarity distances between objects for use in cluster analysis. They use

nearest neighbor classification and compute an adapted Levenshtein Distance [50]

measure between known cluster representatives and new exemplar data. The authors

identify several limitations of their research including clustering time and space com-

plexity and inadequacies of the similarity measure chosen to include semantics and

inter-process relationships. They cite a best performance error rate of eight percent

[49].

In order to demonstrate intra-family support without falling under an inter-family

support threshold, Henchiri and Japkowicz [39] propose an exhaustive search for n-

gram features. This automated feature selection process provides a limited set of

features from the training sets in k-fold cross validation. They use both ID3 and J48

(a C4.5 variant) DT algorithms among other techniques. (Waikato Environment for

Knowledge Analysis (WEKA) [37] calls their DT implementation J48.) They compare

their classifier results with [77] for the same sample corpus and achieve an advantage

in overall accuracy improvements of up to 29.77% in comparable tests. Not only do

the DT algorithms achieve the greatest improvements, but they also have the greatest

overall accuracies and the lowest FPRs. In tests with minimal sequence length and

least inter-family support, ID3 achieves a 99.77% detection accuracy with a 0.34%

error rate.

Bailey, et al. [7] investigate the disparities between malware family identification

across antivirus products. They confirm the same difficulties identified in previous

sections about the problems with naming conventions. The authors execute malware

samples in a virtual machine and record their behavior, but they focus on the lasting
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state changes rather than the OS system calls as much of the other dynamic analysis

work does. Finally, a cluster analysis identifies similarities between samples and

forms the basis for an appropriate label. Labeling consistency leads to improved

communication concerning malware samples according to Bailey.

The Intelligent Malware Detection System (IMDS) is the association rules classifier

of Ye, et al. [102] that they compare to the classification performance of Naive Bayes,

SVM and DT classifiers. They specifically examine the top 500 API calls of maximum

relevance, using their presence or absence as features. The classifier accuracy rate of

their IMDS prototype is 0.9307. The authors reveal that their implementation is now

part of KingSoft Antivirus Software.

Rafiq and Mao [72] implement Naive Bayes classifiers with high level features to

detect malware. Their features include file size, obfuscation indicators, the number

and names of program sections, and section alignment all of which come from the PE

header with the possible sole exception of obfuscation indicators. The authors claim

that if a sample program is a Browser Helper Object (BHO) in their study, then their

system classifies it as malware with a 98% likelihood. A BHO is a browser plug-in for

Microsoft Internet Explorer to extend its functionality. Other features the authors

use are whether the executable runs as a service and if it imports specific DLLs.

They implement a feature extraction system with access to hundreds of features.

Their Naive Bayes classifier uses different combinations of features from a sample

set of approximately 7, 000 programs with k-fold cross validation. With a set of

samples where half are malicious, they report a mean experimental detection rate of

approximately 90%.

A recent patent application from Schipka [76] on behalf of MessageLabs Ltd.

shows a litany of classification functions they use to identify malware in various types

of message streams, including e-mail, hypertext transfer protocol (HTTP), file trans-
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fer protocol (FTP), and others. Specific techniques cited include linear classifiers,

Bayesian, neural networks, SVMs, k-nearest neighbors, radial basis function neural

networks, and genetic algorithms and evolutionary systems. Potential features include

literal values from fields, such as header fields, as well as computed values.

Tabish, et al. [92] focus on distinguishing malware from specific types of files.

They test non-malicious documents, executables, pictures, movie files, portable doc-

uments and compressed files to a malware set of six different types. The classes of

malware they assess include backdoors, Trojans, viruses, worms, constructors and

miscellaneous malware. They divide samples into blocks and compute a variety of

statistics to use as features for a boosted J48 classifier for each block. After correlating

block predictions, their system makes malware predictions based on the percentage of

malicious blocks. Their system achieves a 90% detection accuracy for models distin-

guishing each malware class from the assortment of non-malicious files. The malware

classes chosen by Tabish, et al. are a mixture of malware propagation methods and

payloads.

In the sole malware static heuristic research application to determine malware pay-

loads, Kolter and Maloof [47] extend their previous detection work [46] to identifying

three specific types of malware. They identify the difficulties associated with manu-

ally acquiring appropriate labeling for the malware types from analysis reports, which

limits their test to 525 samples of backdoors, mass-mailers and viruses. To prevent un-

dersampling by using compound class labels such as backdoor+mass-mailer, they use

one-versus-all classification, where a sample assumes a positive label if it has a specific

capability, such as backdoor capability or mass-mailer. If the backdoor and mass-

mailer classifiers predict positives, the overall prediction becomes backdoor+mass-

mailer. Using stratified sampling and ten-fold cross validation, they report mean

area under curve (AUC) and 95% confidence intervals of 0.8986 ± 0.0145 using a
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SVM classifier, 0.8704± 0.0161 using a boosted J48 classifier and 0.9114± 0.0166 us-

ing boosted J48 as best performing classifiers for mass-mailers, backdoors and viruses

respectively. Interestingly, there is no statistically significant difference between SVM

and boosted J48 performance in their tests. The malware classes chosen by Kolter

and Maloof are a mixture of malware propagation methods and payloads.

2.5 Situation Awareness

Endsley [33] is a renowned expert on situation awareness (SA) and her research

dominates the literature. Due to the ubiquity of the Endsley SA model, this disser-

tation only examines MaTR implications for this model although the mappings and

discussion likely apply equally to other SA models as well.

Endsley defines SA as “the perception of the elements in the environment within

a volume of time and space, the comprehension of their meaning, and the projection

of their status in the near future” [33]. She explicitly separates situation assessment

as the “process of achieving, acquiring, or maintaining SA” [33]. SA is only relevant

in dynamic environments and does not include static knowledge representations, such

as procedures and checklists.

Endsley describes the human property of attention as a limitation for obtaining

SA. She asserts that humans have a limited bandwidth for direct attention, which

is necessary at all SA levels. Complex or stressful situations may easily consume a

decision-maker’s attention bandwidth and have adverse implications on the operator

achieving or maintaining SA.

Figure 9 shows Endsley’s SA model [31, 33]. Abilities, experience and training are

factors external to SA that provide a foundation to mental processes that ultimately

influences decision making. These factors distinguish between novice and expert op-

erators. Experienced decision-makers can make poor decisions without accurate and
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Figure 9. Endsley’s SA model (adapted from [33]).

complete SA, but novices can make poor decisions with perfect SA. In the latter case,

the novice needs additional experience or training in order to make good decisions.

Abilities, experience and training contribute to the forming of schemata and men-

tal models in long term memory [33]. These schemata and mental models are generic

patterns of types of situations that one uses to identify appropriate responses based

on the current goal. Endsley refers to these responses as plans. If operators have

previously experienced a situation, they may have stored scripts in long term mem-

ory which are lists of actions to achieve end states compatible with current goals.

When scripts are available to execute a plan via experience or training, the operator

can execute the script to accomplish his goal. The Endsley SA model from Figure 9

represents schemata, mental models, plans and scripts as “Preconceptions”.
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Goals are self-explanatory, but particular goals may focus operator attention to

specific elements while lowering attentiveness to others, which is a phenomenon End-

sley refers to as automaticity. Automaticity [33] is a mental “auto-pilot” mode, such

as when one drives home from work but cannot remember specific situation details

like stopping at red lights, etc. The potential danger of functioning in automaticity

is a reduced sensitivity (due to lack of attention) to new stimuli in the environment.

Perception (Level 1). The first level of the Endsley SA model is perception,

the knowledge of the state of significant elements in the environment. This state

information includes both static and dynamic attributes. An example of an element

at the Level 1 SA is a defender observing Michael Jordan at half court dribbling a

basketball while in full stride with a determined expression on his face (and a grin).

Comprehension (Level 2). Comprehension is the fusion of Level 1 infor-

mation to generate the proverbial “big picture” in the operator’s mind. Novices may

have the same Level 1 SA abilities as veteran operators, but may be incapable of

assimilating the information to form a Level 2 SA. Comprehension is the interpreta-

tion of what the current environment state means and is the logical justification for

potential response actions. Continuing from the previous example, Michael Jordan

still has the ball, his team is down by one point, only five seconds remain on the game

clock and the observer is the only defender on the defensive end of the court. All of

these disparate Level 1 elements now clearly describe a tactical scenario.

Projection (Level 3). To achieve what Endsley refers to as Level 3 SA,

one needs the ability to project the future state of the environment especially in

the immediate future, as tactical situations often require. The grand purpose of

reaching Level 3 SA is that it provides the operator the opportunity and knowledge
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to determine the best course of action to meet their objectives [33]. A likely future

projection from the previous example is that Michael Jordan is going to embarrass

the poor defender as he scores the game winning basket with a spectacular slam dunk

as the game ends. This projection allows the defender to determine his best course

of action, no matter how unappealing those options might be.

Endsley also identifies task and system factors that influence SA and the decision

making process [33]. System capability is a measurement of how well the system en-

ables SA by obtaining state information about pertinent elements in the environment.

The MaTR architecture provides the operator information directly related to its ma-

jor goals, versus antivirus products providing only a vendor-assigned name. Common

human stress factors may cause the operator to limit attention to a small set of el-

ements at the expense of others, which may be non-beneficial to SA if the attended

elements are not the most salient for achieving SA in the current environment. Full

automation may lead to lower SA during automated solution failure or degradation.

Focused automated solutions that diminish the operator’s effort with workload and

SA acquisition are believed to be beneficial for achieving SA.

Interface design recommendations from Endsley demonstrate the process of ob-

taining SA, or situation assessment. The primary objective of the system interface is

to provide the operator with information necessary to achieve SA without exhausting

their attention bandwidth [33]. Following is a list of interface designs most perti-

nent to this research that leads to systems that have positive effects on operator SA

hypothetically:

• degree of interface capability to provide information contributing to Level 2 or

Level 3 without unnecessary operator effort

• “degree to which information is presented in terms of operator’s major goals”

[33]
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• make critical cues for mental model and schemata activation salient

• always provide a global SA view across goals and detailed information support-

ing immediate goals

• system projection support for novice operators

• parallel processing design for sharing attention

One particular design factor Endsley describes is complexity [33]. As systems

become increasingly more complex, the additional components, communications, and

dynamics of the components require greater amounts of operator mental workload

to achieve the SA levels. As cyberspace is an extremely dynamic environment, the

rate of communications, complexity of end systems and activity certainly exceeds the

ability of humans to perceive, comprehend and make projections of the environment

without targeted automation to enhance human effectiveness.

2.6 Confusion Matrix Statistics

A confusion matrix is a common method to record classification performance.

This research uses the following confusion matrix statistics for comparison between

methods and to quantify performance. Table 5 is a sample confusion matrix with

predictions specified by columns and actual classes indicated by row entries.

For confusion matrices where n = 2 classes and where Class 2 is considered “pos-

itive”, Equations 25-28 are the FPR, true positive rate, FNR and true negative rate,

respectively. For n = 2, entry1,1 and entry2,2 represent the number of true negatives

and true positives respectively, while entry1,2 and entry2,1 represent the number of

false positives and false negatives respectively.
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Table 5. Sample confusion matrix for n-class classifier results.

Predictions

Class Class 1 . . . Class n

A
ct

u
al

Class 1 entry1,1 . . . entry1,n

. . . . . . . . . . . .

Class n entryn,1 . . . entryn,n

false positive rate =
entry1,2

entry1,1 + entry1,2
(25)

true positive rate =
entry2,2

entry2,1 + entry2,2
(26)

false negative rate =
entry2,1

entry2,1 + entry2,2
(27)

true negative rate =
entry1,1

entry1,1 + entry1,2
(28)

For multi-class problems where n > 2 classes, the above equations are inadequate

to express performance except for all-but-one classifiers as no single, “positive” class

exists. Instead of positive and negative rates, the producer’s and consumer’s accura-

cies similarly describe the results, except they generalize to a larger number of classes.

Equations 29-32 are the producer’s accuracy, omission error, consumer’s accuracy and

commission error for Class c, respectively. The producer’s accuracy and omission er-

ror have a truth perspective, while consumer’s accuracy and commission error have a

user perspective. The producer’s accuracy and omission error for a “negative” class

are synonymous with true negative rate and FPR respectively in the two-class prob-

lem. For the “positive” class in a two-class problem, the producer’s accuracy and

omission error are synonymous with true positive rate and FNR respectively.
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producer’s accuracy =
entryc,c
n∑

m=1

entryc,m

(29)

omission error =

n∑
m=1

entryc,m − entryc,c

n∑
m=1

entryc,m

(30)

consumer’s accuracy =
entryc,c
n∑

m=1

entrym,c

(31)

commission error =

n∑
m=1

entrym,c − entryc,c

n∑
m=1

entrym,c

(32)

The kappa statistic [81] is a measure of agreement between two judgments. Equa-

tion 33 is the formula for computing the kappa (κ) statistic, where P (agree) is the

probability of agreement and P (chance) is the probability of chance agreement be-

tween the two judgments, such as truth data and classifier predictions. The range

of the kappa statistic is [−1, 1], where 1 indicates perfect agreement between pre-

dicted and actual classes and −1 is perfect disagreement. When κ = 0, no correlation

between predicted and actual classes exists.

κ =
P (agree)− P (chance)

1− P (chance)
(33)

2.7 Summary

This chapter describes in depth many of the popular machine learning techniques

found in malware detection research. Several machine learning techniques exist that
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show promise in the malware detection problem. Many of the machine learning

techniques have application to both continuous and discrete datasets. As signature-

based solutions become overwhelmed by an exponential growth in malware, pattern

recognition based solutions are gaining popularity.

The majority of published research in malware detection with machine learning

techniques involve the use of n-grams, short sequences of bytes commonly found in

each class of software. Although many researchers develop successful classifiers using

n-grams, a lack of explanation for their successes exist as some admit [46]. Many

other techniques examine elusive data features, such as instruction-level information

or subroutines, but obtaining this information is problematic [14, 16]. Execution

traces take too much time and other assumptions about pristine disassembly make

overzealous assumptions [65].
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III. Methodology

3.1 Chapter Overview

This chapter explains how this research accomplishes its goal and experimentally

defines the MaTR architecture for further evaluation. Development of the cyberspace

machine learning classifiers as targeted sensors for SA follows the CRoss-Industry

Standard Process for Data Mining (CRISP-DM) [13]. This process ties the develop-

ment of classifiers back to the underlying business objectives.

This chapter first briefly introduces the fundamental process steps of the CRISP-

DM. After describing process execution for this effort, the chapter concludes with a

thorough discussion of the resulting classifier models.

3.2 CRISP-DM Process

The CRISP-DM process is a six-phase representation of a data mining lifecycle

commonly used in industry [13]. Figure 10 is an adaptation from the CRISP-DM

consortium [13] illustrating the iterative nature of this process. The outer circle with

arrows describes data mining in general and how it is often an iterative process with

subsequent iterations capitalizing on previous knowledge gleaned.

One can intuit common activities of each CRISP-DM process phase by the specific

phase name. The following paragraphs present brief descriptions of each phase and

their typical activities.

Business Understanding. The CRISP-DM process [13] begins with defin-

ing the high-level business objectives and the criteria for success to ensure the analyst

knows what the organization actually wants to achieve. This step avoids wasting time
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Figure 10. Adaptation of CRISP-DM process (from [13]).

and resources while not pursuing the purpose of the activity. Part of the knowledge

discovery may include answering key questions regarding business operations.

The end result of the business understanding phase is the analyst gaining a thor-

ough low-level understanding of the business problem. The analyst documents avail-

able resources, problem constraints and assumptions. Collectively this information

frames the problem space and enables the analyst to define specific data mining goals

and success criteria to meet the business objectives. One key output of this phase

is a project plan that is a roadmap for successfully accomplishing business goals by

meeting the data mining goals.

Data Understanding. The data understanding phase involves the acqui-

sition, exploration and quality control of the dataset itself. The analyst defines the
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collection method and describes the data representation and units of measure. If

necessary, the analyst considers integration steps to deal with combining data from

multiple data sources. The next task involves exploration of the dataset, such as

determining distributions and relationships among features, which may lead to the

disqualification of specific models for the problem. The final task is to verify the data’s

quality, including completeness, presence of errors and non-duplication of exemplars

among other subtasks. The distinction between portions of the data understanding

phase and the data preparation phase may blur depending on the application.

Data Preparation. Determining which features and exemplars to include

from the dataset is the initial task of the data preparation phase. Selected data

may undergo a cleaning process, such as inserting estimates for missing data. The

next task is to construct the data, including computing derived features, projection

transformations, data binning and generating synthetic data. Integrating and merg-

ing data tasks may be necessary as previously alluded and may involve generating

longer, more expressive tuples by matching primary and foreign keys of records of

multiple tables in a relational database. The final task of the data preparation phase

is formatting the data allowing for proper import to the modeling tool.

Modeling. The modeling phase requires the analyst to select appropriate

models suited for the problem based on objectives and whether characteristics of the

data agree with assumptions of the candidate model. The analyst should define how

they will test model performance before building the model. Dataset divisions may

include validation sets in addition to the standard training and test sets. Generating

the model includes selecting appropriate model parameters. After building the model,

the analyst assesses whether or not the model meets the established success criteria.
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Evaluation. Evaluation of the model determines if it achieves the stated

business objectives. The decision to reject the model may involve previously unper-

ceived business constraints, which the analyst may incorporate into the next data

mining iteration. A review process is necessary to ensure model development adhered

to the business and model requirements. Evaluation ends with a determination of

the best course of action, whether it is model deployment or additional iterations are

justified.

Deployment. This phase defines the deployment strategy based on evalua-

tion. An additional plan published during deployment is the monitoring and mainte-

nance plan, which describes how to monitor the deployed model for incorrect usage

or ineffectiveness over time. The last task of the deployment phase is the delivery of

the final report and lessons learned.

The six phases are themselves iterative, because phase transitions depend largely

on the results of the previous phase. For example, a specific data mining goal is to

produce a classifier to identify faulty widgets with 95% accuracy during modeling. If

the model accuracy on test data is only 89% in the evaluation phase, the discrepancy

may warrant further business or data analysis or possibly deployment because the

last several iterations yielded no substantial improvement.

3.3 Execution of the CRISP-DM Process

This section describes the execution of the CRISP-DM process until the generation

of the final model architecture. Sections with the appropriate phase heading include

discoveries and observations made about appropriate architectural decisions during

the particular phase regardless of iteration. The scope of this dissertation does not

require the deployment phase and the evaluation phase is limited to the discussion of
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how the final MaTR model architecture contributes to cyberspace SA according to

the Endsley model [33].

3.3.1 Business Understanding.

Chapter I introduces the motivation and the background scenario for this multi-

faceted research problem. Observations of the current CND scenario imply many

significant requirements for the development of cyberspace SA indicators. This section

describes these observations and the model requirements derived from them.

A major enabling requirement for cyberspace SA is the ability to detect malware.

The final MaTR architecture must be capable of detecting malware with a high level

of accuracy. Therefore, model accuracy is a major statistic of observation. Taken

further, the FPR and FNR are also critically important to cyberspace SA. The FPR

directly relates to the wasteful overhead on CND operators and defensive analysts.

Given the large number of unique, non-malicious programs running on organization

networks, an acceptable FPR realistically depends on the available operator or ana-

lyst capacity and the number of unique, non-malicious programs. The FNR relates

to missed malware samples, which diminishes cyberspace SA and allows threat oper-

ations to continue unnoticed.

Another problem with current capabilities is the dearth of effective tactical indica-

tors. Commercial antivirus products, one of the major resources currently available

to address this problem, are effective against known threats, but they are “slow”

scanners, because they have to compare static indicators to identification and behav-

ior signature databases [87]. Dynamic analysis methods requiring CPU emulation

are even slower [87]. These products address this by restricting searches to the most

probable infection points [87, 91] unless the user opts for a full scan, which may take

hours to complete and is not suited to time-sensitive tactical scenarios. As indicators
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for cyberspace SA, the MaTR architecture must have excellent runtime performance

to be valuable in tactical situations. Tactical situations, such as air-to-air combat,

have relatively short durations and tactical situations in the cyberspace domain are no

exception. As a result, the MaTR architecture restricts itself to only static heuristic

features that do not require runtime observation or CPU emulation [91]. MaTR also

restricts feature sources from instruction-based static heuristics which are difficult to

acquire [65].

If the MaTR architecture can communicate rationale for its predictions clearly,

it becomes more trusted and usable by the human operator. Rather than attempt

to model dozens of low-level contextual elements, which would have a negative im-

pact on runtime performance, MaTR further restricts itself to a feature set based

on commonly used practitioner information (anomalies and structure), which simpli-

fies human understanding of its decision making process. This restriction enhances

MaTR’s human-machine communication potential, because it only uses features that

experienced operators already understand. One commonly used feature set in the

literature that does not follow this principle is n-grams. Kolter and Maloof allude to

the difficulty of understanding how n-gram classifiers make predictions by following

a decision path including or excluding particular byte sequences [46].

Antivirus products routinely only provide simple alerts, such as present or not

present. Even using their heuristic scanners, antivirus products routinely only report

whether or not a sample’s attributes exceeds a preset threshold. Knowing how close

any given sample is to exceeding the threshold adds substantial context and allows

the operator to make a judgment call particularly in scenarios requiring higher sen-

sitivities. The final MaTR model should provide additional information to provide

operator flexibility and allow additional data fusion methods.
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3.3.2 Data Understanding and Data Preparation.

The dataset source is a collection of 32-bit PE samples obtained from well known

sources. All “clean” samples come from harvesting of clean installs from vendor

media of Microsoft Windows XP, Vista, and Windows 7, while the malware samples

come from an updated download of the VX Heavens dataset [99]. Specifically, the

malware, or “dirty”, samples are Trojans, worms, and viruses as identified by the

antivirus label assigned to them. Extractions of PEs from these sources eventually

yields 25,195 clean and 31,193 dirty samples for a total of 56,388 samples available

for testing of the final MaTR model. Earlier pilot tests relied on relatively smaller

samplings, because the PE collection was still in its infancy. During the last process

iteration, the final models had much larger samplings available for testing.

This project uses a custom program to extract high-level program features from

the PE collection. This program also computes derived features, such as anomaly

and certain structural attributes. Direct comparison of extracted data with output

of other tools [40] and code [12] verifies the feature values are correct. The result-

ing dataset is not multivariate normal per the Jarque-Bera [58] and Lilliefors [59]

goodness-of-fit normality tests, because nearly all features are not normal [66]. This

observation may cause problems for machine learning techniques that assume nor-

mality, such as LDFs, but should not impact others.

Verifying data correctness after integration is an important issue for ensuring the

validity of experimental results. Extraction of features from the non-malware and

malware sets uses the same tool to simplify data integration. Additional measures

to assure proper data integration is the extensive use of hashes to avoid including

duplicate exemplars.

Determining appropriate exemplar labels is another significant challenge. While

most antivirus products agree on general malware determinations [25], they often
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disagree on more specific identifications, such as malware types. An initial pilot

investigation of the level of malware type agreement between three antivirus products

shows no practically significant difference in FNN classifier performance with labels

determined by partial and full agreement. The study finds a statistically significant

difference of only 1% accuracy between partial and full agreement labeling. This result

implies that different antivirus vendor labels are more appropriate for identifying

additional interpretations rather than determining a single label to assign. Section

4.4 describes the labeling methodology used in the MaTR achitecture for determining

propagation methods and payloads.

This project uses MATLAB to develop classifier models. As MATLAB operates

primarily on double-precision floating point numbers, the final number formats for

dataset features are doubles. Again, the feature extraction tool handles this conver-

sion.

3.3.3 Modeling.

The modeling phase is extensive and attempts to answer key questions for project

success. Determining the proper architectural approach to problem decomposition

has a potentially huge impact on the success of this research, because building ac-

curate classifiers is paramount to increasing SA. Different architectural approaches

to the problem may yield better classifiers and have a more definitive impact on cy-

berspace SA. This effort experimentally determines important architecture decisions,

such as the top performing classification algorithm and its parameters allowing focus

to shift to establishing an engineering advantage for the MaTR architecture and its

enhancement of cyberspace SA.

These pilot tests use lower K values of three or five for cross validation to allow

for sufficient representation of smaller class populations in test sets. Test designs
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involving the final model all use ten-fold cross validation. Each test iteration begins

with a random selection of ten equally-sized folds. For each K -fold run, one of the

ten folds serves as the test set while the remaining folds comprise the training set.

3.3.3.1 Modeling Approach and Best Classifier Model.

Two major architectural approaches exist to provide additional malware type

context. The first approach is a “parallel” method that uses a single classifier to

distinguish non-maliciousness files from specific malware types (direct typing). The

“series” approach first performs the detection task followed by a sequence of specific

type checks. This test only examines the detection task and excludes the sequence

of specific type checks. The former approach may have better runtime performance

as a single classifier, whereas the latter is potentially more accurate as it can focus

exclusively on distinguishing between malware classes without interference from the

volume of non-malware samples. Table 6 shows the class populations for these pilot

tests.

Table 6. Sample summary for multiple classifier test.

Class Number of Samples
Non-malware (NM) 11,714

Backdoor (BD) 3,359
Trojan (T) 930
Virus (V) 973

Total 16,976

The pilot test also evaluates four different machine learning classifiers, specifically

LDF, DDA, FNN, and DT. These experiments include DTs, because they demonstrate

superior performance in other research [1, 39, 46, 47]. This test examines LDF due to

observed singularity despite the appropriateness to use QDF when class covariance

matrices are different [28]. The LDF performs better due to the QDF singularity

issues as Tadjudin and Landgrebe suggest [93].
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The DDA experiments rely heavily on MATLAB’s histogram function for feature

binning. In order to minimize the cell sparseness problem [82], this process restricts

the number of total bin enumerations to less than the smallest number of observations

for a class. Due to the combinatorial explosion of possible values for each attribute

and its potential to cause cell sparseness, the DDA model only uses three of the more

salient features as determined by other pilot tests and previous experiments.

Following Duda, et al. [28] recommendations, the FNN structure for the detection

and direct typing problems includes a single hidden layer of 56 and 52 nodes respec-

tively to meet network weight to sample ratios. The network also uses hyperbolic

tangent activation functions for input and hidden layers and pure linear activation

functions for the output layer. The input layer consists of 21 nodes and the output

layer for the detection problem is 1 node and 4 nodes (one for each class from Table

6) for the direct typing problem. The network uses gradient descent with momen-

tum during learning with a learn rate of 0.1 and momentum constant of 0.9. All

loss functions are mean squared error in spite of the recommendation from Kivinen

and Warmuth to use relative entropy [45], because of implementation difficulties in

MATLAB and time constraints. By using the mean squared error as the loss func-

tion, the resulting FNN models may exhibit suboptimal performance. As determined

empirically, training lasts for a maximum of 100 epochs as determined by pilot tests

with a performance goal of 0.005.

The classification DT model uses the standard MATLAB implementation with de-

fault parameters, including pruning. The impurity function computes Gini’s diversity

index [28] to determine split variables. The minimum number of samples associated

with a node to allow the node to split is ten samples. Pilot tests confirm these model

parameters produce a model with better performance compared to other parameter

combinations tested.
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The experiment separately tests each classification method using five-fold cross

validation to minimize sample bias. Furthermore, five replications with new fold

selections reduce experiment variance, which leads to narrower confidence intervals

for analysis based on preliminary tests. Specific folds also use stratified random

sampling to ensure representative samples for each class in the test.

In general, the experimental results are favorable for all of the classifiers compared

to static heuristic malware detection results from Chapter II, but the DT models

clearly perform best. The FNN classifier performs comparably, but has some distinct

disadvantages, notably a much higher training overhead and making zero predictions

for the Trojan class. The disparity between the results from the detection and direct

typing problems across all applied techniques implies that an initial detection test

followed by a series of one-versus-all classifications is the best approach to providing

additional threat information. Distinguishing between non-malware and malware is

noticeably easier and appears to dominate the distinctions between the more similar

malware types during training. All of the techniques demonstrate this same result,

which supports this theory.

Table 7 recaps the performance results of each technique for the different prob-

lems. The DT superior performance is statistically and practically significant for both

applications, but the FNN performs comparably. For each respective problem, the

performance differences between models tested are all statistically significant. Both

LDF and DDA performed similarly overall, but LDF outperformed DDA substantially

with the non-backdoor malware types.

All resulting confusion matrices for these tests are in the Appendix along with

the confusion matrix statistics for the detection problem. Tables 8, 9, 10 and 11 are

the resulting confusion matrix statistics for each classification method on the direct

typing problem. All of the techniques show difficulties differentiating the Trojan
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Table 7. Accuracy results summary with confidence intervals.

Method Problem Mean Accuracy 95% Confidence Interval
LDF Detection 0.8746 0.8697 — 0.8792
DDA Detection 0.8659 0.8642 — 0.8675
FNN Detection 0.9451 0.9418 — 0.9483
DT Detection 0.9764 0.9755 — 0.9774
LDF Direct Typing 0.7776 0.7750 — 0.7802
DDA Direct Typing 0.7844 0.7823 — 0.7864
FNN Direct Typing 0.8799 0.8769 — 0.8830
DT Direct Typing 0.8984 0.8962 — 0.9006

class from the others. In these experiments, LDF and DT are the most accurate,

demonstrating still lackluster producer accuracy rates of 0.5049 and 0.4439 for the

Trojan class respectively. As discussed in previous experiments [25], the disparities

among researchers and antivirus vendors for the Trojan class may contribute to this

performance degradation.

3.3.3.2 Model Parameter Assessment.

In this pilot test, MaTR uses a logical, two-phased architectural approach of first

identifying whether an executable sample is malicious and then determining its most

likely type. Malware detection is a straightforward two-class problem with distinct

malware types grouped together under a single malware class, M. The malware typing

problem uses the distinct malware types provided by antivirus scans. The dataset is a

concatenation of static feature extractions from 32-bit non-malicious executables and

malware of the following types: backdoors, downloaders, Trojans, password stealers,

worms, droppers and viruses.

The MaTR classifier model is the MATLAB implementation of the classification

DT based on its flexibility when dealing with data from non-normal distributions and

categorical data as well as its performance in previous experiments. The purposes of

the following experiments are to verify classifier detection accuracy using MaTR’s set
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Table 8. LDF test confusion matrix statistics for direct typing problem.

Statistic NM BD T V
Producer Accuracy 0.9032 0.5112 0.5049 0.4452
Consumer Accuracy 0.9513 0.7680 0.1707 0.4994

Omission Error 0.0968 0.4888 0.4951 0.5548
Commission Error 0.0487 0.2320 0.8293 0.5006

Kappa 0.5639

Table 9. DDA test confusion matrix statistics for direct typing problem.

Statistic NM BD T V
Producer Accuracy 0.9241 0.7416 0 0.0002
Consumer Accuracy 0.8864 0.5230 0 0.3333

Omission Error 0.0759 0.2584 1.0000 0.9998
Commission Error 0.1136 0.4770 1.0000 0.6667

Kappa 0.5188

Table 10. FNN test confusion matrix statistics for direct typing problem.

Statistic NM BD T V
Producer Accuracy 0.9729 0.8741 0.0013 0.6206
Consumer Accuracy 0.9522 0.7053 0.2000 0.7207

Omission Error 0.0271 0.1259 0.9987 0.3794
Commission Error 0.0478 0.2947 0.8000 0.2793

Kappa 0.7402

Table 11. DT test confusion matrix statistics for direct typing problem.

Statistic NM BD T V
Producer Accuracy 0.9784 0.7977 0.4439 0.7176
Consumer Accuracy 0.9836 0.8033 0.3886 0.7542

Omission Error 0.0216 0.2023 0.5561 0.2824
Commission Error 0.0164 0.1967 0.6114 0.2458

Kappa 0.7888
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of static heuristic features and to extend the application to malware typing. Both

experiments are 32 factorial designs testing the effect of two significant factors in

decision trees, minimum parent split and split criterion values. The three treatment

levels chosen for the minimum parent split value are 10, 20 and 30 based on data

from limited preliminary tests. The three treatment levels chosen for split criterion

value correspond to the available functions in MATLAB [57]: Gini’s diversity index,

the twoing rule and the maximum deviance reduction.

The minimum parent split value defines the cutoff threshold value for determining

if the number of samples associated with a node in the tree warrants possible split-

ting. Lower cutoff values commonly lead to overfitting and loss of generalization [28].

On the other hand, larger minimum parent split values may prevent the tree from

identifying significant patterns in the data or underfitting. The split criterion value

maps to a MATLAB function the tree employs to measure impurity and determine

the splitting feature and value.

Both experiments also use five-fold cross validation with fifty replications. Each

replication includes a new random sampling to determine folds for subsequent cross

validation runs. To avoid overinflation of the detection results, sampling adheres

to a fixed 2:1 NM :M ratio to accommodate DT model requirements. The malware

samples are stratified random samplings from the malware types tested.

Pilot Study - Detection Classifier Results. The results for the detection

classifier are quite significant as all models exceed a 0.99 apparent test accuracy rate

with equally impressive FPR and FNR. The resulting mean confusion matrix for this

test is in the Appendix. Table 12 shows the confusion matrix statistics for the trained

model with the best treatment combination. The mean apparent test accuracy rate

for this model over the cross validation and replication runs is 0.9935 with a kappa
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Table 12. Detection confusion matrix statistics.

Class Producer Consumer Omission Commission

Accuracy Accuracy Error Error

NM 0.9949 0.9955 0.0051 0.0045

M 0.9909 0.9898 0.0091 0.0102

statistic of 0.9855, which demonstrates “almost perfect” agreement between model

prediction and actual classes based on the characterization of Landis and Koch [48].

The producer accuracy of 0.9949 for class NM is a high enough specificity to avoid

deluging analysts with as many false positives as similar published research [72, 96].

While no standard, acceptable FPR threshold exists for this application, Anderson [3]

echoes the need for minimizing the FPR for intrusion detection system applications.

Furthermore, the producer accuracy of 0.9909 for class M is a high enough sensitivity

to limit overlooking potential malware. Although this experiment uses a uniform cost

of misclassification, a cost matrix adjustment can shift the FPR and FNR depending

on operational needs.

The model parameter test examines the performance impact of two factors, min-

imum parent split value (A) and split criterion (B). According to the analysis of

variance (ANOVA) results in Table 13, strong evidence leads to rejection of H0 con-

cerning equality of the main effects for factors A and B, but no evidence suggests a

significant interaction effect between these factors. All ANOVA assumptions are met

with residuals fitting a normal distribution and having constant variance.

Figure 11 shows the mean comparison for different treatment level combinations

with confidence intervals. Expectedly, the classifier performance improves as the

minimum number of samples required for splitting decreases for the treatment levels

tested. This trend is readily apparent in the mean comparison plot as the three lowest

accuracies have the highest minimum parent split values (Factor A). All treatment
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Figure 11. Comparison of detection parameters.

levels with cutoff values of 30 have reduced performance that is statistically significant

from all other treatment combinations.

The treatment level combinations with values for Factor A of 20 exhibit a de-

creased performance from points with values for Factor A of 10, but not enough

statistical evidence exists to make a definitive claim of which is better. Both of these

sets of combinations likely occur nearer to the “knee” of a performance curve than

Table 13. ANOVA results for detection model.

Source Sum Sq. d.f. Mean Sq. F p-value

A 3.02e-04 2 1.51e-04 88.4 1.09e-37

B 1.12e-05 2 5.61e-06 3.29 0.0376

A*B 8.30e-07 4 2.07e-07 0.121 0.975

Error 3.83e-03 2241 1.71e-06

Total 4.14e-03 2249
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the minimum parent split values of 30, which may explain the significant difference

between these data points and not the others.

The only remaining statistically significant treatment combination is (10, dev),

where the parameters are the values for factors A and B respectively. This treatment

level combination yields the best result and is significantly different from the (20, gdi)

and (20, two) combinations. This data point fits with another observable trend, the

general improvement in performance for Factor B levels from two to gdi to dev.

These detection results show that MaTR demonstrates results similar to the other

malware detection research using static analysis techniques and features. The next

section describes the extension MaTR makes to the malware typing problem.

Pilot Study - Typing Classifier Results. While seemingly not as spec-

tacular as the detection tests, the malware typing model provides modest performance

relative to the previous detection results. Considering the predictions do not require

any lengthy manual inspection process and only use static heuristics, the typing re-

sults show a strong potential for prioritization of analysis backlogs. The resulting

mean confusion matrix for this 7-class problem is in the Appendix. Table 14 shows

the confusion matrix statistics for the model with the best treatment level combina-

tion. The mean apparent test accuracy rate for this model over the cross validation

and replication runs is 0.5904 with a kappa statistic of 0.4738, which demonstrates

“moderate” agreement between model prediction and actual classes based on the

characterization of Landis and Koch [48]. Although not extremely high, the expected

value of a random classifier is only 0.1429 given seven malware classes tested.

Although the typing model fails to achieve high accuracy on the specific malware

types, it still demonstrates potential value for identifying backdoors (BD), download-

ers (DW ) and virus (V ) classes. Classifier performance for identifying true Trojan
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Table 14. Typing confusion matrix statistics.

Class Producer Consumer Omission Commission

Accuracy Accuracy Error Error

Backdoor (BD) 0.7510 0.7033 0.2490 0.2967

Downloader (DW) 0.6593 0.6366 0.3407 0.3634

Trojan (TJ) 0.3678 0.3589 0.6322 0.6411

Password Stealer (PS) 0.4553 0.4993 0.5447 0.5007

Worm (W) 0.4283 0.4548 0.5717 0.5452

Dropper (DR) 0.3599 0.4282 0.6401 0.5718

Virus (V) 0.5630 0.6742 0.4370 0.3258

(TJ ) and dropper (DR) samples is especially poor with producer accuracies of 0.3678

and 0.3599 respectively.

Antivirus applications often classify the same samples inconsistently, which can

negatively affect the results of this typing experiment, because the supervised learning

relies on the type labels from antivirus scans. Future investigation may examine

the performance impact of confounding malware types together and vendor labeling

disparities to regain high confidence in the results and maximize situation awareness.

For instance, classifier inconsistencies between the backdoor and Trojan classes exhibit

the highest error concentration and account for 5% of all typing errors.

Another explanation for the difficulty the model has classifying between malware

types is a possibly inherent inadequacy in the salient value of the static heuristic

feature set for making such determinations. The feature set may contain enough

informational value to provide a high degree of accuracy for detection, but that may

be its limit.

The model parameter test examines the performance impact of two factors, mini-

mum parent split value (A) and split criterion (B). According to the ANOVA results

in Table 15, strong evidence leads to rejection of H0 concerning equality of the main
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Table 15. ANOVA results for typing model.

Source Sum Sq. d.f. Mean Sq. F p-value

A 7.65e-02 2 3.83e-02 891 2.15e-285

B 2.49e-03 2 1.20e-03 28.9 3.89e-13

A*B 4.98e-05 4 1.24e-05 0.290 0.885

Error 9.62e-02 2241 4.29e-05

Total 1.75e-01 2249

effects for A and B, but no evidence suggests a significant interaction effect between

these factors. All ANOVA assumptions for this test are met with similar residual

normal and variance plots from the detection test.

Figure 12 shows the mean comparison for different treatment level combinations

with confidence intervals. In this case, strong evidence suggests the treatment combi-

nation that exhibits the best performance mean for treatment combination (10, gdi)

is different. No significant difference exists between any of the two and dev levels for

factor B with the same level for factor A (e.g., (30, two) and (30, dev)).

This plot shows general patterns similar to the detection results. One observable

trend is the general improvement in performance from levels two to dev to gdi for

factor B, only slightly different than the detection results. Another general improve-

ment trend is across treatment levels for factor A with lower split values exhibiting

significant performance improvements.

3.3.3.3 Model Assessment Methods.

When feasible, re-accomplishing other research tests generates competing models

and establishes a baseline performance standard for the final MaTR model. These

tests are truly apples-to-apples comparisons of the two models using exactly the

same K -folds and metric collection techniques. If resources prohibit this approach,

statistical comparison with the published results is the only method possible.
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Figure 12. Comparison of typing parameters.

3.3.4 Evaluation.

The evaluation phase describes how Endsley’s SA model [33] relates to cyberspace

SA and the implications of the final model’s performance on that mapping. Chapter

IV includes a discussion of the mapping after presenting the results of the final model’s

performance. Finally, a scenario illustrates its potential impact.

3.4 Final Model Architecture

The final MaTR model architecture uses a straightforward process for detecting

malware using only a program’s high-level anomaly and structural data. While many

researchers and commercial companies use this same structural data, none rely ex-

clusively on this source of data and achieve the performance levels of MaTR. Figure 13

90



shows the inputs and outputs of MaTR and illustrates its internal process. Inputs to

MaTR are executable files, such as PE files common in the Microsoft Windows OS.

Although an open system, MaTR explicitly bounds the machine and human oper-

ator together within the overall system, a subtle yet significant distinction from other

work that simply uses a computer to generate “answers”. In MaTR’s architecture,

the operator becomes a critical component receiving and providing feedback to the

rest of the system and eventually initiating a response action. Limiting features to

historically relevant information is a requirement to maximize potential feedback with

a human operator. One can visualize this benefit when considering the comprehension

difficulty for a human faced with the resulting decision process of an n-gram solu-

tion or the lack of decision making information provided by a commercial antivirus

product that only provides the final result. The co-alignment of the human operator

and the machine within MaTR allows for critical and constructive feedback, which

remains an area for continued work.

The “Data Pre-processing” stage allows for any steps required before feature ex-

traction and subsequent classifications. Data pre-processing actions include discovery

of valid executable files. Other actions include pre-filtering known malware and known

non-malware, decrypting data, and data sharing with other sensor systems.

During “Feature Extraction”, the system parses the input file to find the prede-

termined data inputs for the subsequent classifiers. Features (described later) are

restricted to the input file’s high-level structural anomalies and raw structure in-

formation. “Feature Transformation” involves any action taken on features before

classification, such as bounding, mapping, projecting, etc. Examples of well known

transformations include principal component analysis and factor analysis.

The “Detection Classifier Data” component represents the data for the trained

classifier. For example, DT classifiers must correctly initialize a binary tree node
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Figure 13. MaTR system process.

structure with appropriate cut features to uniquely identify the specific feature to

test, cut values and classification decisions for the leaf nodes of the DT.

The underlying DT classifier comprises the “Detection Classification” component.

At this point, the classifier takes the transformed features and makes its classifica-

tion decision based on its underlying algorithm. For example, in DTs, the decision

sequence begins at the root node and progresses down to a single leaf node where

the classification decision is determined. “Detection Post-processing” allows for post-

filtering before presenting preliminary results to the operator, triggering additional

actions, result verification with other systems, or data fusion with additional sensors.

As MaTR does not rely on computations to determine the final feature set, it

avoids the overhead of a resource-intensive feature selection step [46]. However, the

Kolter and Maloof method results in a simpler and more efficient feature extraction
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step. This results in a trade-off as MaTR’s feature extraction process remains more

complex throughout its life cycle.

3.4.1 Feature Overview.

Perhaps the greatest distinction between MaTR and other research products is

its feature source. MaTR achieves high detection performance while restricting its

features exclusively to high-level program structural anomalies and general structural

data. Instead of following a mathematical model to determine features, MaTR utilizes

features commonly used by analysts [72, 91, 96] when examining samples to determine

if they are indeed malicious. Rafiq and Mao found that malware routinely contains

structural anomalies (78%), while non-malware does not (5%) [72].

The term “high-level” structural data refers to the basic structural format that

the OS loader uses when loading an executable program into memory before runtime

and higher level information, such as common file attributes (e.g., name, path, file

size, etc.). The sources for the structural anomalies come from a number of publi-

cations and observations of program structure. Combining expert experience with

program structural information capitalizes on analysts experience while allowing for

identification of additional anomalous feature combinations.

As analysts examine samples, their previous experiences contribute to a prior

knowledge of analysis technique effectiveness and past observations. Significant ob-

servations useful for confirming malice are anomalies primarily seen in malware. Rou-

tinely, analysts combine available anomaly information with structural information

to either confirm their suspicion or look for additional anomalies. For instance, if

the visible program disassembly is insufficient to provide any significant advertised

function, the analyst may suspect that the program is packed. Many popular packers

dedicate a program section for unpacking, but the section must allow reading and
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executing (as it will soon contain code), but it must also allow writing to unpack

the obfuscated code before attempting to execute it. Analysts confirm these section

permissions, or characteristics, by examining structural information for yet another

anomaly.

MaTR utilizes over 100 static heuristic features based on structural anomalies

and structural information itself. Many of MaTR’s features are interval, unlike the

Kolter and Maloof method which uses exclusively Boolean features. MaTR does not

attempt to generate an instruction disassembly due to the difficulty of validating its

correctness [65] nor does MaTR use instruction sequence signatures as commercial

antivirus programs use [87].

Structural anomalies are generally logical operations on program header informa-

tion or file areas pointed to by header information. Classes of structural anoma-

lies include: section names [72, 91, 96], section characteristics [72, 91, 96], entry

point [91, 96], imports [72, 77, 96], exports [96], and alignment [91]. Structure in-

formation, included to enable classifiers to identify additional anomalous combina-

tions, comes directly from the PE headers, such as the IMAGE FILE HEADER and the

IMAGE OPTIONAL HEADER [62]. A description of some of the more popular anomaly

features follows.

Non-standard section names. Several researchers [72, 91, 96] also identify

the presence of a non-standard section name as anomalous. Microsoft [62] defines

several standard section names for PEs and most compilers adopt this standard. This

standardization has led to an overwhelming majority of non-malware containing only

standard section names. According to Rafiq and Mao [72], only 3% of non-malware

use unconventional section names, while 80% of malware samples use non-standard

names.
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Non-standard section characteristics. Several researchers [72, 91, 96]

identify non-standard section characteristics as an anomaly. If a code section has

read, execute and write characteristics instead of the normal read and execute char-

acteristics, it immediately raises analysts’ suspicions. Normally, the program uses

sections with these permissions to unpack obfuscated code before attempting to exe-

cute it. This particular anomaly is common in malware, because packing is a common

malware armoring technique [91].

Entry points. A program entry point that points to a section not marked as

containing code is anomalous [96]. Szor states that a program whose entry point does

not point to the code section (.text for default compiling) is another entry point

anomaly [91]. Packers commonly adjust the entry point to point to an additional

code section to start the unpacking process.

Imports. Inclusion of information regarding import libraries and functions

is common among malware research [72, 91, 96]. Common features include the num-

bers of import libraries and functions. Executables with a low number of imported

functions are suspicious [96], because programmers normally provide program utility

by importing functions, such as I/O, encryption or complex math.

Exports. Treadwell and Zhou also identify DLLs that export no functions as

anomalous [96]. Since the purpose of a dynamically-linked library is to provide func-

tionality to other programs via exported functions, the absence of exported functions

is surely suspicious.
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3.5 Chapter Summary

This chapter explains how this research addresses the problem area by using a

standard industry-defined process and then assessing how the resulting model can

positively impact cyberspace SA. The CRISP-DM process serves as a guide for data

mining projects by defining typical tasks and suggesting methods to remedy short-

comings for each project phase. A summary of experimental findings during iterations

of data mining follows the process description. The final model is one possible result

of the process and serves as the test model for experiments described in Chapter

IV. While the CRISP-DM process normally ends with deployment of a solution,

this dissertation ends in the evaluation phase with the identification of how the final

MaTR prototype addresses the business problem of limited SA given its performance

characteristics.
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IV. Results and Analysis

4.1 Overview

This chapter presents experimental results of the final model of the MaTR ar-

chitecture from Chapter III. Experimental results show engineering advantages of

MaTR over commercial solutions and other research in malware static heuristics in

terms of accuracy performance, execution time and training time. Finally, the chap-

ter covers the mapping of the problem area to the Endsley SA model and discusses

the model’s potential impact on enhancing cyberspace situation awareness (SA).

Comparisons between MaTR and the Kolter and Maloof [46, 47] n-gram method-

ology are appropriate, because both methods exclusively use static heuristic features

to make predictions and the published results of Kolter and Maloof are the most

definitive. Kolter and Maloof are also the only other researchers who expressly build

and test classifiers capable of identifying specific malware types or functionality.

Both the Kolter and Maloof research and MaTR appear best suited for providing

strong indicators of the presence of malware to achieve cyberspace SA. Deployments

of both methods are extremely efficient making them practical for split second, on-

demand feedback for any given sample. On the other hand, dynamic analysis methods

and slower static analysis methods that must generate disassembly or control flow

graphs may take on the order of seconds to make predictions for a single sample.

The purpose of these experiments is to demonstrate engineering advantages of the

final MaTR model from Chapter III. The first experiment examines the performance

advantage of MaTR versus the Kolter and Maloof [46, 47] n-gram detection method-

ology. For better comparison, this effort reproduces the original Kolter and Maloof

work with a much larger dataset (original work uses 1,971 benign and 1,651 malware

samples; retest uses 25,195 benign and 31,193 malware samples) and employs ad-
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ditional experiment standardization techniques. For example, using the exact same

folds for cross validation reduces experimental variance and use of identical statistic

collection methods for both models ensures consistency when collecting metrics.

The next experiment examines MaTR’s detection accuracy against a validation

set of relatively unknown malware versus the n-gram methodology and three major

commercial antivirus products. The test includes performance metrics from three

different sensitivity levels for all detection methods. Finally, this experiment presents

results of combining the three commercial products into a “super” antivirus product

and examines its performance against MaTR with various sensitivities.

The last experiment is an evaluation of MaTR’s performance for identifying mal-

ware propagation methods and payloads. An initial examination compares MaTR’s

performance against original work from Kolter and Maloof [47] in predicting payloads

via n-grams. The MaTR experiment formally focuses its attention on the propaga-

tion methods that the antivirus industry has informally adopted [64, 86, 91]. Next,

another MaTR extension examines performance against a set of strategic payloads.

The chapter concludes with a thorough description of how MaTR can assist op-

erators in achieving cyberspace SA in regards to malware. The standard for relating

MaTR performance to SA is the ubiquitous Endsley SA model [33].

4.2 Comparison to n-gram Detection Methodology

The following experiment is a thorough performance comparison of MaTR and

a retest of the Kolter and Maloof n-gram detection research [46, 47]. The retest

uses a much larger sampling than their original work and validates their claim that

performance results should improve with additional samples. The results demonstrate

a significant performance improvement for MaTR in terms of operational utility.
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4.2.1 Methodology.

Section 3.4 already describes the MaTR methodology. This section covers the

Kolter and Maloof [46, 47] methodology for generating n-grams, a commonly used

data source for text classification.

In reconstructing the Kolter and Maloof experiment, this research uses their de-

scribed methodology [46] to generate n-grams and employs their identified length of

n = 4 with a 1-byte sliding window. They treat the presence of an indicated n-gram

as a Boolean feature to their boosted DT classifier. Tests utilize only the 500 most

relevant n-grams based on information gains as computed by the following formula:

IG(j) =
∑

vj∈{0,1}

∑
C∈{Ci}

P (vj, Ci) log
P (vj, Ci)

P (vj)P (Ci)
, (34)

where Ci is the ith class and vj indicates the presence or absence of the jth n-gram.

The prior and conditional probabilities are self-explanatory.

4.2.2 Data Collection and Features.

The following experiments examine only 32-bit PE samples obtained from well

known sources. All “clean” samples come from harvesting of clean installs and updates

of Microsoft Windows XP, Vista, and Windows 7, while the malware samples come

from the VX Heavens dataset [99] in April 2010. The malware, or “dirty”, samples

include Trojan, worm, and virus types as identified by the antivirus label assigned to

them. Extractions of all 32-bit PEs from these sources yields 25,195 clean and 31,193

dirty samples for a total of 56,388 samples. These tests do not currently use samples

from SourceForge as in [46], because of perceived potential for including malware

in the clean sample corpus based on [71] versus harvesting exclusively from vendor

media and updates.
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Kolter and Maloof use hexdump to capture n-grams in their experiments [46, 47],

but hexdump has documented side effects when dumping hexadecimal representations

when using format strings to control output [54]. Specifically, when the format string

calls for 4 bytes and the sample has less than 4 bytes remaining, hexdump zero-pads

the output. To avoid this error, a heavily optimized, custom program (developed to

perform this function) extracts the n-grams for this experiment given the require-

ments from Kolter and Maloof [46, 47]. This program satisfies their requirements by

determining class prior probabilities and extracting all 4-grams present in each PE

with a 1-byte sliding window. The program correctly handles the case where hexdump

potentially fails (fileSize mod 4 6= 0) by not padding the output to create phantom

n-grams. Finally, the program computes the information gain of each 4-gram based

on Equation 34 and lists the 500 highest gain 4-grams.

4.2.3 Experimental Design.

This experiment is a side-by-side comparison of leading static analysis malware

detection techniques, specifically MaTR and the previous Kolter and Maloof n-gram

research [46, 47]. For consistency with prior research, these tests both adopt a stan-

dard experimental design using stratified, ten-fold cross validation. Each disjoint fold

contains roughly the same number of samples from malware and non-malware sets.

During each run, a different fold functions as the test set while the remaining folds

comprise the training set.

Each fold requires a determination of the top 500 n-grams specific to that fold’s

training set for the Kolter and Maloof technique. Classifiers train on only the samples

from a fold’s training set and test results come from application of the trained clas-

sifier to the fold’s test set. MaTR and the Kolter and Maloof retest use identical folds.
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These experiments use DTs since both Kolter and Maloof [46] and Dube et al. [26]

both identify these techniques as the best performing for this problem set in previous

work. Both techniques use the ensemble TreeBagger classifier from MATLAB [60]

with 25 trees. These tests use only TreeBagger default parameters of a minimum of

one observation per leaf and
√
n features selected at random for each cut variable,

where n is the total number of features. The major differences in the Kolter and

Maloof retest and the original work [46] are the use of MATLAB’s TreeBagger instead

of the boosted J48 DT implementation in WEKA [37] and the larger sampling. The

Kolter and Maloof original work [46, 47] uses 1,971 benign and 1,651 malware samples,

while the retest uses 25,195 benign and 31,193 malware samples.

4.2.4 Measures of Effectiveness.

In order to fully compare these experimental results to other published research,

this effort includes the results of a variety of measures commonly used in this research

area. Kolter and Maloof report receiver operating characteristic (ROC) area under

curve (AUC) results with confidence intervals [46]. Schultz et al. report accuracy

with FPR, but also provide confusion matrix data, which allows for calculating FNR

[77]. Tesauro et al. include general values of accuracy and FPR [94]. ROC measures

use pooled averages across folds as described by Maloof [53]. Computed confidence

intervals result from studentized bootstrapping with the sampling defined by the ten

cross-validation folds.

Comparison of performance data from the Kolter and Maloof retest with the orig-

inal work serves as a validation measure for the experiment. Given the high accuracy

Kolter and Maloof achieve in their tests (AUC of 0.9958), any significant lesser per-

formance in the retest would require a full ANOVA using the J48 solution in WEKA
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[37] and substantially smaller sample sizes to determine the the source of variation.

Kolter and Maloof claim that larger sample sizes would increase performance [46].

4.2.5 Other Observations.

This section describes non-performance observations from this experiment. Kolter

and Maloof [46, 47] allude to these in their original work. In particular, this section

describes the number of unique n-grams generated with the larger sampling, a brief

discussion of the n-grams with the highest information gain and final model charac-

teristics.

4.2.5.1 Data Collection Observations.

Using the described Kolter and Maloof parameters for generating n-grams yields

a mean of 2,103,005,388 unique n-grams across training sets. Given that n = 4

bytes, the maximum possible number of unique n-grams is 232 = 4, 294, 967, 296. The

observed number of unique n-grams utilizes (or saturates) 49% of the possible 4-gram

space. For a perspective of retest scale, Kolter and Maloof observe a saturation rate

of only 6% in their large dataset for their original experiment.

Determining the set of n-grams using the Kolter and Maloof method requires ex-

tensive “computational overhead” as they attest [46]. The datasets become too large

to store in memory and as a result, calculations must resort to heavy disk-utilization

with deliberate runtime performance optimization. The number of expected unique

n-grams is a critical implementation factor, as it is key in determining how best to

partition the n-gram data space.

In this experiment, the Kolter and Maloof n-gram generation technique generates

a mean of 2,103,005,388 unique n-grams across training sets. This results in a larger

saturation level of 2, 103, 005, 388/232 = 49% compared to the saturation level of
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6% from the Kolter and Maloof research [46]. While this saturation level causes

complications for determining the top n-grams to select, it does not impede the

Kolter and Maloof model classification performance, because the saturation of the n-

gram space does not affect final model decisions which occur in the leaves of the DTs.

Theoretically, their model uses 500 Boolean features which yields 2500 = 3.27e150

potential leaf combinations given the DT classifier.

Figure 14 is a plot showing the number of unique n-grams growing as the number

of files parsed increases. Unfortunately, the two have a clearly linear relationship for

the range tested with a strong Pearson’s correlation of 0.9950. The larger sample

sizes forces calculations to predominantly disk-based solutions.
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Figure 14. Number of unique n-grams increases linearly.
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4.2.5.2 Selected n-gram Observations.

The Kolter and Maloof method selects a total of only 505 unique n-grams to use

as features across all ten folds making fold selections quite consistent. Table 16 shows

the top seven n-grams for all folds. The primary difference of the remaining n-grams

across folds is their order.

Table 16. Top seven n-grams across all folds.

0x00560001

0x56000100

0x72007900

0x00720079

0x0043006c

0x43006c00

0x44006500

One observation about this partial listing is that the selected n-grams appear to

focus on capturing specific byte sequences peculiar to each class. For instance, the

first n-gram 0x00560001 is a 1-byte shift from the second n-gram chosen 0x56000100.

This pattern propagates through the selections with potentially longer byte sequences

daisy-chained together.

A second observation is the prevalence of zero bytes (0x00) throughout the selec-

tions. Nearly 44% of all selected n-gram bytes are zero bytes. Closer examination

of the zero bytes reveals a potential pattern of Unicode character representations,

zero bytes followed by non-zero bytes. This pattern is visible in 79% of all n-grams

selected.

Kolter and Maloof describe the difficulty in validating why n-grams work for

classifying PEs [46]. As an example, they found a mysterious n-gram (0x0000000a)

in their studies [46, 47], which they can not attribute as being code, data, or structure.

This specific n-gram 0x0000000a is found in a comparable percentage of samples in
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the expanded malware set from VX Heavens as Kolter and Maloof found [46, 47]

(75% in their work), but the same n-gram also appears in 83% of the non-malware

set and the information gain feature selection algorithm never ranks it in the top 500

for any folds. Why Kolter and Maloof focus on this particular n-gram is uncertain

as they do not specify whether their calculations lead to its inclusion in the top 500

n-grams.

MaTR avoids the validation problem by using only historically useful static heuris-

tic information [72, 91, 96] as features as described in Section 3.4.1. Using common

anomalies and irrefutable structural information that analysts routinely use in mak-

ing their assessments provides strong validation of MaTR’s results. As a result, an

analyst can confirm its decisions based on meaningful observations. The major dif-

ficulty with interpreting MaTR’s decisions is the complexity of following the logical

steps of an ensemble method—even the apparently intuitive DTs.

4.2.5.3 Model Observations.

The resulting classifiers from the original Kolter and Maloof research are ensembles

of small trees [46], averaging 90 nodes. In the ensemble of DTs in Kolter and Maloof

retest, the tree sizes are much larger averaging 2,824 nodes per tree. Given the 49%

saturation of the 4-gram space and the much larger sampling in the retest, the trees

likely had to grow substantially to minimize impurity at the leaf nodes.

MaTR averages 354 nodes per tree for the trained ensemble of DTs in these tests,

which is approximately 3 times the tree size observed in previous MaTR research

with smaller datasets [26]. The simpler tree representations of MaTR are likely due

to the expressive power of augmenting the Boolean features with interval features. For

instance, Boolean features are incapable of representing distances without additional

Boolean features with special encoding. As an example, to represent the number of
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import libraries for a PE may require multiple Boolean features to establish data

bins, such as {[0..5], (5..200], (200..∞)}. The trees in the Kolter and Maloof retest

have inefficient representations as all features are Boolean, which forces trees to grow

significantly larger to accommodate the increased saturation of the n-gram space.

4.2.6 Experimental Results and Discussion.

Figure 15 shows a magnification of the ROC curves for both MaTR and the Kolter

and Maloof n-gram retest. While both methods demonstrate excellent results, MaTR

achieves the more ideal ROC curve as it tracks closer to the left and top sides, resulting

in a mean AUC of 0.999914 for MaTR compared to 0.999173 for the Kolter and

Maloof retest. Furthermore, MaTR never exhibits a lower true positive rate (TPR)

or a higher FPR than the Kolter and Maloof retest for any of the 2,500 threshold

values tested for the ROC plot. While the resulting AUC performance difference is

statistically significant, it is not necessarily practically significant as both methods

are close to ideal.

Tables 17 and 18 are the resulting AUC and accuracy confidence intervals for

MaTR, the Kolter and Maloof retest, and past research. The AUC results for the

Kolter and Maloof retest are a statistically significant 0.34% mean difference from

their original research [46, 47]. This observation is quite interesting considering the

increased saturation of the possible n-gram space for this larger test, but the classifier

adequately compensates by extending the length of branches to utilize more of the

available combination space.

Table 17. Mean AUC and confidence intervals.

Method Mean 95% CI
MaTR 0.999914 0.999840 — 0.999987
KM retest 0.999173 0.998926 — 0.999421
KM original [46, 47] 0.9958 0.9934 — 0.9982

106



0 0.005 0.01 0.015 0.02 0.025
0.975

0.98

0.985

0.99

0.995

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

ROC Detection Test (MaTR vs. KM N−gram)

 

 

MaTR
KM N−gram

Figure 15. ROC curves for MaTR and KM n-gram retest.

Table 18. Mean accuracy and confidence intervals.

Method Mean 95% CI
MaTR 0.999166 0.999007 — 0.999325
KM retest 0.989919 0.988897 — 0.990941
Schultz (strings) [77] 0.9711 not reported
Schultz (DLL function calls) [77] 0.8936 not reported

Although the confidence intervals for MaTR and the Kolter and Maloof retest are

close, MaTR demonstrates superior results that are statistically significant to both

the Kolter and Maloof original and the retest. This consistency may indicate a higher

saliency value of structural and anomaly data for detecting malware than n-grams,

which are typically used for text classification. However, both results strongly suggest

that static heuristic methods remain viable for malware detection.

For comparison with other research, Table 18 includes the apparent accuracy

statistics. MaTR’s accuracy is significantly better than those for the Kolter and

Maloof retest as the confidence intervals do not overlap. While MaTR’s accuracy is
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consistent with its AUC results, the Kolter and Maloof retest reveals an unexplainably

lower accuracy than one may anticipate. Analysis of the additional metric now leads

to practically significant results as the accuracy results of the Kolter and Maloof retest

are nearly a full percentage point below MaTR’s results. The accuracy advantage of

MaTR is an aggregate indicator of a significant impact on its operational utility.

Discussion of this impact requires computation of FPR and FNR (addressed later).

The best finding from Schultz’s work [77], the strings classifier, has a much lower

mean accuracy, and they do not include any confidence interval to describe variability

in their published research. The simplicity of defeating a classifier based solely on

strings [77] was a key factor in the decision to not repeat their experiment or a similar

variant.

Additionally, Schultz’s best structure/anomaly result has a mean accuracy of

0.8936, which is substantially lower than MaTR’s. This discrepancy is most likely

attributed to the small sample sizes used in their work. They state in their published

research [77] that they had a limited subset of 244 PEs (206 benign and 38 malicious).

Table 19 shows the mean confusion matrix elements across the ten folds for the

experiment. In the table, TP, FP, TN and FN stand for the standard true and false

positives and negatives. MaTR averages only 5 total misclassifications, while the

Kolter and Maloof retest has 57. Both results are impressive considering the number

of samples tested.

The confusion matrix data provides the values to determine the FPR and FNR as

shown in Table 20. Again, Schultz et al. do not report confidence interval data, but

Table 19. Mean confusion matrix data for MaTR and KM n-gram retest.

Method TP FP TN FN
MaTR 3,112 2 2,517 3
KM retest 3,072 14 2,505 43
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Table 20. Confidence intervals for FPR and FNR.

Method Mean 95% CI
MaTR FPR 8.73e-4 5.80e-4 — 1.17e-3
MaTR FNR 8.03e-4 4.56e-4 — 1.15e-3
KM retest FPR 5.64e-3 3.65e-3 — 7.62e-3
KM retest FNR 1.37e-2 1.23e-2 — 1.51e-2
Schultz (strings) FPR [77] 3.80e-2 not reported
Schultz (strings) FNR [77] 2.73e-2 not reported
Schultz (DLL function calls) FPR [77] 7.77e-2 not reported
Schultz (DLL function calls) FNR [77] 2.89e-1 not reported

their reported FPR and FNR appear quite different than both MaTR and the Kolter

and Maloof retest results. Once again, the MaTR results for both FPR and FNR

are significantly superior to those of the Kolter and Maloof retest. Furthermore, the

MaTR FPR and FNR is lower than the 1% and 15-20% respectively from Tesauro’s

work [94], while MaTR additionally detects forms of malware other than boot sector

viruses.

Finally, these FPR and FNR results illuminate a significant operational utility

advantage of MaTR’s methodology versus that of Kolter and Maloof. Operationally,

the FPR directly relates to additional analyst workload, which is a form of resource

waste as the additional samples are all non-malicious. The FNR also has operational

implications, because it describes the method’s inability to detect malicious samples.

While neither a high FPR or a high FNR is desirable, arguably the FPR is most sig-

nificant, because it has such cascading effects given the normal distortion of sampling

from the non-malware and malware classes.

For example, a typical clean installation of an OS and office productivity software

normally yields approximately 10,000 unique PEs, and this number will continually

increase during system deployment. An advanced persistent threat (APT) may only

require 1 or 2 malware artifacts to conduct effective offensive information operations

on any given system. Given this estimate of a best case scenario, a 0.1% FPR yields 10
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additional non-malware samples for an analyst to examine in addition to any malware

samples detected. If the FPR is higher, the factor for resource waste increases linearly.

This example also illustrates the value of a low FNR, because a method with a high

FNR may miss the small number of malware artifacts present on a system.

4.3 Detecting Unknown Malware

This experiment tests the performance at different sensitivity levels of the trained

MaTR and n-gram models from Section 4.2 and three major commercial antivirus

products on a special validation set of unknown malware. This type of sample set has

incredible strategic significance, because it allows for model validation (not standard

training and testing) on the most challenging target, new malware undetected by

most antivirus products, such as those used by APTs.

4.3.1 Methodology.

The MaTR model follows the methodology described in Section 3.4. MaTR uses

exclusively PE anomaly and structural information to make its predictions. Section

4.2.1 describes the n-gram methodology. The commercial antivirus products tested

use proprietary methods.

This experiment does not require traditional training or testing for machine learn-

ing. Its purpose is to validate the performance of MaTR against the n-gram model

and the three commercial antivirus products on a sample set that the MaTR and

n-gram models did not previously use for training or testing and that the antivirus

companies likely have not analyzed.

The three commercial antivirus products tested all receive the Virus Bulletin

VB100 certification for April 2011 [51]. Virus Bulletin conducts periodic independent

performance evaluations of antivirus products. To receive the VB100 certification,
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the product must detect 100% of malware samples on the “wild list” as determined

by The WildList Organization [70] and issue no false positives on Virus Bulletin’s set

of clean samples using the product’s default settings.

4.3.2 Data Collection.

The validation set for these tests is a combined collection of 278 unknown mal-

ware samples discovered during incident response by anonymous organizations. Local

policies restrict distribution of these discovered samples to antivirus vendors making

the set “relatively unknown” for test purposes. These organizations shared this data

with the stipulation that their identities remain hidden. With this agreement, du-

plication of these experiments with the same exact dataset is not possible, but the

technique described herein has direct application to numerous other organizations

that can validate these findings. Furthermore, no public database of “relatively un-

known” malware exists as antivirus vendors would have previous access to the same

samples to identify.

4.3.3 Experimental Design.

For the MaTR and n-gram models, this experiment uses the same features de-

scribed in Section 4.2.2 and the highest accuracy classifiers from Section 4.2.6. This

experiment does not involve any training or testing of any classifiers in the sense of

typical classifier training and testing. It simply applies the previously trained model

with the highest mean accuracy against test data (i.e., the highest, single fold accu-

racy from the ten folds) in Section 4.2.6 to the validation set. Table 21 shows the

trained MaTR model results on test data with a decision threshold of 0.50.

The experiment has two factors: the detection method and the sensitivity thresh-

old for the detection method. The detection method has five levels, MaTR, an n-gram
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Table 21. MaTR model test data results.

Statistic Mean 95% Confidence Interval
ROC AUC 0.999914 0.999840 – 0.999987
Accuracy 0.999166 0.999007 – 0.999325
FPR 8.73e-4 5.80e-4 – 1.17e-3
FNR 8.03e-4 4.56e-4 – 1.15e-3

model and each of the three commercial antivirus products. The sensitivity factor

has three distinct levels. For these tests, the factor levels are simply the built-in

low, medium, and high sensitivity levels for the commercial antivirus products. For

MaTR and the n-gram model, varying the decision threshold of the classifier to 0.75,

0.50, and 0.25 for the positive class constitutes a fair and simple “standard” for low,

medium, and high sensitivity levels. Typically, systems with high sensitivity tend

to have lower specificity. In other words, a trade-off exists between higher detection

capabilities of the positive cases and higher FPR.

These tests are side-by-side comparisons of MaTR, the n-gram method and three

commercial antivirus products against the malware validation set. For consistency

with prior research, these tests both adopt a standard experimental design using

stratified, ten-fold cross validation. Each disjoint fold contains roughly the same

number of malware samples from the validation set. During each run, a different fold

functions as the test set. Additionally, the 10-fold cross validation is replicated ten

times with different folds for each replication. All detection methods use identical

folds across both factors to reduce experimental variance. The MaTR and n-gram

models under test did not use any samples from the validation set during training or

testing.

All antivirus products use default configurations, except for the sensitivity factor

levels, and have updated signatures as of the date of the experiment. Each detection

method runs in its own Windows 7 virtual machine with identical baseline configura-
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tions. The unknown malware samples are on a CD-ROM that each scanner examines

in turn. For these tests, the commercial products all had updated scan engines and

signatures as of the experiment date, March 8, 2011.

4.3.4 Results and Discussion.

Although this experiment has two factors, a full ANOVA is not necessary as the

results are readily apparent. Therefore, discussion of results follows the sensitivity

factor levels, including descriptions of results for all detection methods for each. Par-

tial confusion matrices for MaTR and the n-gram model are in the Appendix.

Table 22 shows the mean scan times for each detection method (except the n-gram

model as a working prototype was not available) on the entire 278 samples in the

validation set. All detection methods execute on virtual machines with similar loads

and access samples via CD-ROM. Although not intended as a definitive performance

evaluation, the scan times demonstrate a significant execution performance advantage

for MaTR versus the three commercial products. The runtime disparity is likely

due to the fact that MaTR encapsulates a generic signature for malware and does

not attempt to identify the specific strain of malware, a traditional requirement for

antivirus products. In the table, the abbreviation AV refers to a commercial antivirus

and the following number is the index consistent across all tests.

Table 22. Mean scan time for MaTR and commercial antivirus scanners.

Detection Method Mean Scan Time (s)
MaTR 0.9
AV1 43.0
AV2 56.0
AV3 391.0
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4.3.4.1 Low Sensitivity Level.

For test runs with the low sensitivity level, MaTR’s performance is superior to the

n-gram model and all three commercial antivirus products tested by a wide margin

as shown in Table 23. While the best commercial antivirus product fails to reach a

50% true positive rate (TPR) against the validation set of unknown malware, MaTR

correctly identifies almost 94%. The low sensitivity level of this test and the discrep-

ancy of results highlight the significant advantage of generic malware detection over

current commercial solutions. Furthermore, this advantage occurs when restricting

classification decisions to static heuristic features.

MaTR performance demonstrates low variation across the ten replications of 10-

fold cross validation as evidenced by the relatively narrow confidence interval. The

n-gram model exhibits higher variance between runs as its confidence interval width is

nearly 50% greater than MaTR’s. The commercial products exhibit less consistency

across folds and replications than MaTR, but they are consistent with each other.

Just as MaTR’s TPR is more than double the best commercial product’s rate, the

confidence intervals for the antivirus products are nearly double the width of MaTR’s

interval.

Table 23. Experiment TPR results on validation set (low sensitivity).

Detection Method Mean TPR 95% Confidence Interval
MaTR 0.938783 0.930447 – 0.947119
n-gram 0.870504 0.858084 – 0.882922

AV1 0.456825 0.439162 – 0.474489
AV2 0.388439 0.370665 – 0.406214
AV3 0.356071 0.340914 – 0.371229
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4.3.4.2 Medium Sensitivity Level.

The results from the medium sensitivity level are surprisingly similar to the low

sensitivity, especially for commercial antivirus. Only MaTR, the n-gram model and

AV1 exhibit any change in detections at all (see Table 24), but MaTR’s performance

is again statistically superior to the other methods. At this level, MaTR finds 13

more samples in the entire validation set boosting its TPR to over 98%. The n-

gram solution makes substantial performance improvement as well, but maintains

its higher variance evidenced by the confidence interval width. Meanwhile, AV1

detects 3 additional samples as malware overall increasing its TPR to nearly 47%.

The remaining antivirus products exhibit no change in detections at the medium

sensitivity level.

Interestingly, MaTR becomes even more consistent across the experiment folds and

replications as evidenced by a 50% reduction in the width of its confidence interval.

Although AV1 also increased its detection rates at the medium sensitivity level, it

continues to exhibit roughly the same consistency across folds and replications. Again,

the other antivirus products exhibit no change so their confidence intervals remain

the same.

Table 24. Experiment TPR results on validation set (medium sensitivity).

Detection Method Mean TPR 95% Confidence Interval
MaTR 0.985569 0.981508 – 0.989629
n-gram 0.949640 0.941552 – 0.957733

AV1 0.467606 0.449780 – 0.485431
AV2 0.388439 0.370665 – 0.406214
AV3 0.356071 0.340914 – 0.371229
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4.3.4.3 High Sensitivity Level.

Tests of the high sensitivity level produce the starkest contrasts between MaTR

and the commercial antivirus products as shown in Table 25. MaTR misses only 1 of

the overall 278 samples in the validation set and achieves a TPR of over 99%. The

n-gram solution performance increases dramatically again, but maintains is pattern

of higher variance between tests. Remember, the training and testing of the MaTR

and n-gram models did not include any of the malware samples in the set of un-

known malware, which adds substantial strategic value to this finding. Again, MaTR

demonstrates more consistent performance across folds and replications as it reduces

the resulting confidence interval width by an additional 50%. The MaTR performance

is statistically superior to the n-gram model and the commercial antivirus products.

AV1 detects only 1 additional sample from its medium sensitivity level. Although

the best performing commercial antivirus product tested, AV1 fails to reach a TPR of

50% against the unknown malware samples. The remaining antivirus products again

exhibit no change at the high sensitivity level.

Although a surprising result, several theories may explain why the commercial an-

tivirus products are relatively sensitivity invariant to the unknown malware samples.

Malware authors may have more thoroughly tested methods to avoid their products

due to their market share or specific customers. The antivirus companies may have

Table 25. Experiment TPR results on validation set (high sensitivity).

Detection Method Mean TPR 95% Confidence Interval
MaTR 0.996402 0.994249 – 0.998555
n-gram 0.982014 0.977638 – 0.986383

AV1 0.471216 0.453380 – 0.489053
AV2 0.388439 0.370665 – 0.406214
AV3 0.356071 0.340914 – 0.371229
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made design decisions regarding trade-offs between false positives and sensitivity.

Regardless of the explanation, the test results are unanticipated.

As the final planned detection test, MaTR’s detection rate is more than two times

greater than the best performing commercial antivirus product tested and statisti-

cally superior to the n-gram model. Against an operational validation set, this finding

is significant as it shows the capability gap of commercial products versus unknown

malware. These threats maneuver around commercial capabilities and rely on or-

ganizations’ blind trust in antivirus products to protect them. Increasing defensive

maneuver may stop or degrade these threat activities.

4.3.4.4 Union of Antivirus Products.

Due to the large disparity in results for the various sensitivity levels, additional

tests examine the combined effectiveness of the three commercial antivirus products.

In this case, the union of the three commercial products forms a “super” antivirus

detection system. If any of the component products detect a sample, then the test

considers the conglomerate system to have detected the sample.

Subject to the same experimental design, the union of all detections from com-

mercial antivirus against the validation set still does not achieve similar performance

levels as MaTR. Table 26 shows the comparative results of MaTR and the union of

antivirus products at all sensitivity levels. The union performs substantially better

than the individual products with a 10 to 25% TPR boost in detection performance.

The same performance inconsistencies across folds and replications as seen in indi-

vidual antivirus product tests is visible in the union results as well. In spite of its

improvements versus the individual products at all sensitivity levels, the union still

fails to appreciably challenge MaTR’s (or the n-gram model’s) performance.
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Table 26. MaTR and union of antivirus products TPR results.

Detection Method Mean TPR 95% Confidence Interval
MaTR (low) 0.938783 0.930447 – 0.947119
Union of AVs (low) 0.589894 0.571996 – 0.607792
MaTR (med) 0.985569 0.981508 – 0.989629
Union of AVs (med) 0.597090 0.579471 – 0.614709
MaTR (high) 0.996402 0.994249 – 0.998555
Union of AVs (high) 0.597090 0.579471 – 0.614709

The union of antivirus products exhibit no change from medium to high sensi-

tivity levels. In this case, the additional sample detected by AV1 in the earlier high

sensitivity level test, at least one of the remaining products already found. The col-

lective improvement from low to medium sensitivity levels for the union of antivirus

products is lower than the individual improvement of AV1 due to the same rationale.

At this point, one may conjecture that commercial antivirus products, while rel-

atively effective at containing global or regional threats, are not nearly as effective

against targeted, local threats. Traditional antivirus is helpful for containing global

outbreaks of viruses and worms, but does not appear as valuable for protecting an

organization from targeted threats or APTs. These threats target specific victims

with custom malware that avoids detection by antivirus products and is generally

not available for antivirus analysis.

The fact that commercial antivirus products detect nearly 60% of the unknown

malware in this set is both a confirmation of the maliciousness of the dataset and a

demonstration of antivirus shortcomings. Figure 16 shows the overlap of antivirus

product detections by sensitivity level for the entire unknown set (not just test data).

Although large overlaps exist, 37% of detections for the “super” antivirus product are

detections by only one antivirus product (61 of 164 total detections for low sensitivity;

62 of 166 total detections for medium and high sensitivities). The relative effectiveness
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Figure 16. Venn diagrams showing antivirus product detection overlap for unknown
samples by sensitivity levels.

of different collection techniques the antivirus companies use may account for most

of the detections coming from a single product.

From the antivirus industry perspective, they cannot protect against malware

they have never seen. Users expect a commercial antivirus product to not only alert

the user of an infection, but to also sanitize or clean the malware as well. If threats

use malware customized to avoid detection from current antivirus systems and they

restrict distribution, only the victim organization has substantial opportunity to find

the offending sample. Even if discovered, the victim may not desire to share the

sample with malware researchers, because its an indirect acknowledgment of system

or network compromise.

Given the apparent value of generic malware detection methods against unknown

malware, organizations should consider investing in an in-house capability. This ap-

proach may be most appropriate for organizations with sensitive data or in extremely

competitive markets.

4.4 Identifying Propagation Methods and Payloads

This series of experiments tests the performance of MaTR and compares the re-

sults to the Kolter and Maloof n-gram malware payload research [47]. MaTR tests

use a much larger sampling than the Kolter and Maloof original work and assign

119



appropriate labels based on information contained in the assigned malware names of

multiple antivirus products. Automation of label assignment is simple and results

in a less biased estimation of appropriate class labels than inputs collected from a

single vendor. The MaTR performance statistics on like classes of malware have

higher mean values than the published results from Kolter and Maloof [47]. The next

two experiments examine MaTR performance against the informal antivirus industry

standard for malware propagation methods [64, 86, 91] and also strategic payloads.

4.4.1 Methodology.

The MaTR model itself follows the methodology described in Section 3.4. MaTR

uses exclusively PE anomaly and structural information to make its predictions. Sec-

tion 4.2.1 describes the Kolter and Maloof n-gram methodology for building classifiers.

The next section describes the malware labeling method MaTR employs for train-

ing and testing. As previously discussed in Chapter II and as Kolter and Maloof

attest [47], determining appropriate malware labels for machine learning is a difficult

and often manual process.

As model validation, the first experiment tests the same subclasses of malware

from the original Kolter and Maloof work [47], specifically mass-mailers, backdoors

and viruses. These subclasses are a mixture of propagation methods and functional

payloads. The next two experiments explicitly test propagation methods and strategic

functional payloads. The propagation method test evaluates the MaTR classifier per-

formance of identifying whether a given malware sample is a Trojan, worm or virus,

which are the three major propagation methods the antivirus industry generally set-

tles on. The payload test examines the MaTR classifier performance of identifying

strategic payloads from a set of different malware payloads, including those not ex-

plicitly tested as a “positive” class. This payload test is therefore a demonstration of
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the more operationally sound application instead of merely distinguishing one payload

from a sample set comprised of only three possible payloads.

4.4.2 Data Collection and Features.

The following experiments examine only 32-bit PE malware samples obtained from

a download of the VX Heavens dataset [99] in April 2010. Specifically, the malware

samples are Trojan, worm, and virus types as identified by the antivirus label assigned

to them. Extractions of PEs initially yields 30,884 malware samples. Table 27 shows

the final breakout of propagation and payload classes. Obtaining these particular

class labels is a challenging problem and worthy of further discussion.

Table 27. Final malware dataset with propagation and payload sets.

Set No. of Samples
Propagation (Trojan) 20,746
Propagation (Worm) 6,874
Propagation (Virus) 3,167
Payload (Backdoor) 11,077
Payload (Spyware) 7,747
Payload (Mass Mailer) 2,095
Payload (Bot) 4,003

4.4.2.1 Malware Labeling.

Automated extraction of propagation methods and payloads from malware labels

is a novel approach to the supervised learning malware label problem. As Kolter and

Maloof find [47], determining labels for prospective samples is a daunting task—one

that typically relies on vendor classifications anyway. Ultimately, this approach al-

lows researchers to leverage antivirus companies’ expert opinions and obtain much

larger samplings.
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Incorporating the expert opinion of malware researchers requires harvesting rele-

vant information from antivirus labels to assign appropriate class labels for machine

learning. Recall that Kolter and Maloof generate labels by manual perusal of reverse

engineering analysis reports on Symantec’s website [47]. To avoid tedious manual

analysis of potentially incomplete analysis reports, this research extracts and refer-

ences pertinent information from antivirus product malware labels for assigning class

labels.

An extraction of information from the VirusTotal website [98] for a hash list

of known malware serves as a raw database from which to generate pertinent class

labels. The VirusTotal information includes scan results for 41 commercial and free

antivirus products, but not all products include information in a useful format for

label generation for either propagation methods or payload classifiers.

Some antivirus products do not provide enough data to infer propagation and

payload information. Some products that do not detect nearly all of the malware

samples examined cannot provide the requisite information, because they do not

have any label for the sample. Therefore, including products with low detection

rates needlessly reduces the available set for training and testing. Also, if a product

emphasizes family names and variant identifiers from the CARO standard, it likely

has little value for label generation. Rather than deciphering each family and variant

from these products, filtering out their results serves as a significant data reduction

step while dramatically simplifying the problem. In these tests, filtering out these

product scans leaves only labels from five antivirus products.

At this point, review of the actual antivirus product naming conventions is neces-

sary. Guided by Occam’s razor, the goal is a simple yet broad approach to categorize

unknown samples without requiring manual review of analysis reports. This approach

may include a small number of errors for each class, but the overwhelming majority of
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samples appear correct. The assigned antivirus labels are descriptive representations

of a human analyst’s perception.

For propagation methods, products normally use the word Trojan or a trunca-

tion of Troj or TR to indicate Trojans. Worms typically contain the word worm,

while viruses traditionally either contain the word virus or list their minimal plat-

form requirement (e.g., Win16, WinNt, Win32, etc.) without additional propagation

information. Occasionally, antivirus products label samples as not-a-virus, which

requires obvious handling.

Payload information is straightforward as well. Backdoors and bots normally

include those exact words. Using the Anti-Spyware Coalition definition [4], spyware

is “tracking software” that breaches user privacy. This definition includes obvious

exact label matches, but also subclasses of keyloggers and the CARO standard of pws.

In practice many labels include the abbreviation psw, an apparent error intended to

be pws.

After filtering out less valuable product scan data, the antivirus product labeling

data for some samples still includes multiple propagation and payload indicators. For

labeling purposes, if any antivirus label indicates a propagation method or payload,

the sample in question adopts all applicable labels. If one product labels a sample

as a Trojan backdoor and another labels the same sample a worm spyware, then

the particular sample adopts Trojan and worm for propagation labels and backdoor

and spyware for payload labels. A single antivirus label may also indicate multiple

payload labels.

Kolter and Maloof [46, 47] describe the interesting problems present with multi-

labeled data. They illustrate this point with samples that establish a backdoor and

log keystrokes. Rather than generating a compound class in these cases, such as back-

door+keylogger, they use overlapped labeling. For example, all samples with backdoor
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capabilities comprise the positive class in a one-versus-all classifier. All remaining

samples compose the negative class. This approach follows the cross training method

described by Boutell et al. [11] and dubbed PT4 by Tsoumakas and Katakis [97]. The

major assumption of this labeling scheme is that the compound class possesses the

collective feature characteristics of each labeled class.

The labeling scheme for the following MaTR tests adopts the Kolter and Maloof

approach, except the source data for the labeling is antivirus labels themselves in-

stead of the manual review of analysis reports [47]. In these tests, the appropriate

label for a sample is the presence of standard indicators for particular propagation

methods or payloads. Table 27 shows the final breakout of samples and the number

of each propagation method and payload. In contrast, Kolter and Maloof found label

information for only 525 of their 1,651 malware samples.

4.4.3 Experimental Design.

Consistent with previous experiments, these tests adopt a standard experimental

design using stratified, ten-fold cross validation using the same classification algorithm

and settings, except the ensemble uses 55 trees as determined by a pilot test. Each

disjoint fold contains roughly the same number of malware samples. During each

run, a different fold functions as the test set while the remaining folds comprise the

training set.

4.4.4 Comparison to Original Kolter and Maloof Payloads.

Table 28 shows the resulting AUC for MaTR and the original findings from Kolter

and Maloof for their experiment [47]. The AUC for MaTR classification of backdoors

is significantly superior to the original n-gram method. The remaining one-versus-all

classifiers for MaTR have better mean performance than the best classifier results from
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Kolter and Maloof, but not at a statistically significant level. MaTR’s performance

against mass mailers is statistically significant from the boosted DT result (SVM best

model in original work) from Kolter and Maloof for the same class.

Table 28. Mean AUC and confidence intervals for KM payload test.

Method Mean 95% CI
MaTR (Backdoor) 0.934058 0.928792 — 0.939325
MaTR (Mass Mailer) 0.913503 0.906645 — 0.920362
MaTR (Virus) 0.915020 0.904315 — 0.925724
KM (Backdoor) [47] 0.8704 0.8543 — 0.8865
KM (Mass Mailer) [SVM] [47] 0.8986 0.8841 — 0.9131
KM (Virus) [47] 0.9114 0.8948 — 0.9280

The Kolter and Maloof n-gram methodology has higher variance—even on the

smaller dataset—than MaTR as evidenced by the confidence intervals widths. The

Kolter and Maloof widths are nearly twice that of MaTR’s. The confidence interval

for the Kolter and Maloof virus classifier extends slightly past the corresponding

MaTR confidence interval by 0.0023, which is less than the mean difference.

Figure 17 is the MaTR ROC plots for the Kolter and Maloof identified payloads.

Comparison with the ROC plot in the original Kolter and Maloof work [47] reveals

smoother plots for MaTR on all curves, an indicator of greater consistency. The

MaTR backdoor ROC increases sharper from the origin and does not taper off nearly

as pronounced as the Kolter and Maloof plot. For instance, none of the Kolter and

Maloof plots (for different algorithm classifiers) reach a 0.90 TPR before hitting a

0.45 FPR, while MaTR reaches a 0.90 TPR at a 0.2 FPR. A comparison of plots

for mass mailers and viruses yields smaller advantages for MaTR in the low FPRs

(< 0.05) and higher true positive rates (> 0.90).

These tests validate the general finding of static heuristic utility for malware

classification in the original Kolter and Maloof work [47]. Additionally, using readily

available high-level program features instead of the resulting n-grams from high-
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Figure 17. ROC curve of MaTR against KM payloads.

overhead computations leads to classifiers with similar or better performance. These

results are consistent with previous work using the same feature source for malware

detection [27] and typing [26].

The most significant observation about performance differences is the fact that

MaTR substantially outperforms the n-gram method for the backdoor class with a

mean AUC difference of 0.0637. The backdoor class is the most populous class in this

test as it comprises nearly 68% of all samples. The degree that MaTR outperforms

the n-gram classifier for the backdoor class and its disproportionately large class

population demonstrate a significant improvement over the n-gram methodology.

Otherwise, these results are very similar to the Kolter and Maloof results [47] with

subtle differences. Kolter and Maloof use a very small sample compared to MaTR,

which raises questions about confidence in their findings. In their retest of the Kolter

and Maloof malware detection work [46], Dube et al. [27] empirically show increased
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n-gram performance with much larger sampling as Kolter and Maloof conjectured,

but malware payload identification is a substantially different problem. While n-gram

and MaTR features may easily find evidence of everyday malware defenses such as

packing, an asymptotic limit on their performance may exist in their application to

the propagation and payload problems.

In this MaTR test, the smallest class size is mass mailers with 2,095 samples,

which is nearly four times as many samples as Kolter and Maloof use (525). Both

methods use 10-fold cross validation which means that Kolter and Maloof tests have

approximately 53 total samples in their test sets for each classifier. By comparison,

MaTR has 1,640 samples in the test set for each classifier, which is a more definitive

sampling.

Furthermore, the class sample populations are quite different and assumed to be

reflective of the entire population. Again, given the cross validation folds, the Kolter

and Maloof method likely tests with a very small sampling for the positive class.

Based on ratios of the larger sampling with MaTR, their test sets for the smaller

class sample populations may consist of as few as 10 samples. In contrast, MaTR test

sets for the smallest class sample population (mass mailers) uses 209 samples in its test

set. While the Kolter and Maloof approach in general is sound, their small sampling

raises more questions about confidence in their findings versus MaTR’s results.

Harvesting class information from antivirus product labels is an effective approach

to the supervised learning sample labeling problem Kolter and Maloof experienced

[47]. The large number of malware samples, including polymorphic and metamorphic

variants, makes human review of analysis reports or similar information to glean

appropriate label information infeasible.

The MaTR labeling approach also addresses antivirus vendor bias issues. An as-

sortment of vendors may come to different conclusions on overall propagation methods
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and payloads. Kolter and Maloof use only information from the vxHeavens [99] and

Symantec [89] websites. The vxHeavens dataset adopts the Kaspersky [42] labeling in

its malware database. Kolter and Maloof expressly identify analysis reports as their

sole source of label information [46, 47]. MaTR uses information from five commercial

antivirus vendors in the final labeling method.

Another intangible benefit of MaTR over the n-gram approach is its use of only

human understandable features. MaTR predictions result from traversing decision

paths that humans can easily interpret. Kolter and Maloof include a portion of one

DT [47], which they admit is not “directly useful” to human experts. While odd

decision cut variables and values may exist in MaTR trees, human operators can

easily discard them.

The n-gram generation overhead is another significant difference between the two

methods. Kolter and Maloof do not identify how many unique n-grams their clas-

sification of the 525 samples generates. Previous tests [27] show a strong linear

relationship between the number of unique n-grams and the number of samples. If

the relationship holds, Kolter and Maloof likely have over 35 million unique n-grams

based on their numbers [47]. While this number does not appear large, it requires a

substantial amount of disk-based processing [27, 46, 47] to generate the information

gains for each of the n-grams. One must not only recompute the information gains

with each cross validation fold, but also harvest the unique n-grams again for each

training set to avoid test contamination. MaTR’s features are readily available with

a one-time overhead of parser construction. MaTR’s dataset does not require recon-

struction for each fold, because the feature set does not change based on calculations

from the training set.
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4.4.5 MaTR Propagation Methods.

The purpose of the propagation test is to demonstrate MaTR performance to clas-

sify samples into one or more of the widely accepted propagation methods currently

used in the antivirus industry. The following subsections detail the experimental de-

sign, results and discussion for testing MaTR against these traditional propagation

methods.

The labeling for the propagation test assumes that each malware sample uses

at least one of the widely accepted propagation methods found in current antivirus

labels, specifically Trojan, worm, and virus. This experiment includes only samples

that directly fall into at least one of these labeled categories as described previously

in Table 27.

Table 29 shows the resulting AUC performance for the MaTR propagation clas-

sifiers. The reduced AUC for the virus class compared to the previous test is most

likely attributable to the different classes involved in the test. While backdoors and

mass mailers are common payloads for Trojans and worms respectively, neither pair-

ing is synonymous. The confidence interval widths for this test are slightly narrower

than MaTR’s results in the previous test indicating lower variance in the results.

The apparent accuracies for the propagation classifiers (see Table 30) are lower

than the AUC measures (except viruses) and again exhibit low variance. The Trojan

classifier has a high FPR (43%) and a low FNR (5%). The worm and virus classifiers

have low FPRs (5% and 0.9% respectively) and higher FNRs (38% and 47% respec-

Table 29. Mean AUC and confidence intervals for MaTR propagation test.

Classifier Mean 95% CI
Trojan 0.899746 0.895569 — 0.903924
Worm 0.902971 0.897656 — 0.908285
Virus 0.890569 0.885966 — 0.895172
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Figure 18. ROC curve of MaTR against traditional malware propagation methods.

tively). The virus classifier has the highest accuracy, because its low FPR applies to

the largest negative class sampling which compensates for its high FNR against one

of the smaller positive class samplings. These observations are also evident in the

resulting ROC curves in Figure 18 with the virus classifier outperforming the others

until it reaches a TPR of 0.75.

These tests extend the application of this data source from previous work [27]

in malware detection to accurately identifying propagation methods. The payloads

Kolter and Maloof identify do not align well with the malware naming convention

Table 30. Mean accuracy and confidence intervals for MaTR propagation test.

Classifier Mean 95% CI
Trojan 0.864066 0.858389 — 0.869742
Worm 0.863110 0.859120 — 0.867101
Virus 0.937984 0.934649 — 0.941320
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most antivirus companies use. This test shows how MaTR performs on the traditional

malware propagation methods currently used by antivirus companies. Although not

as grandiose as MaTR’s detection rates [27], this additional information provides

useful context for dynamic risk assessment. For instance, given a MaTR detection

of a worm or virus, a relatively high likelihood exists that without an immediate

response the infestation may spread causing substantially more effort to contain. A

Trojan detection can indicate an APT purposefully traversing the company network

or a user inadvertently downloading “adware”.

Depending on current operations, the operations climate, and data sensitivity of

the system in question, containment may be less significant to potential data exfiltra-

tion by an APT. While additional threat information, such as payloads, is valuable,

identifying propagation methods is a significant foundation for threat response, specif-

ically to level of containment effort.

The lopsided FPR and FNR fortuitously occur in advantageous application areas.

The worm and virus classifiers correspond to the two classes most likely to spread

like wildfire through the company network. These two classifiers are also the two with

the lowest number of false positives, which means alerts should not condition users to

ignore them as with other security products. The high FPR for the Trojan classifier

is associated with the much smaller negative class set, while its low FNR implies that

it should not miss many Trojan predictions.

This additional threat information comes with no manual analysis of the sample

or overhead of more resource-intensive methods. It also provides human operators

with actionable information regarding the threat as described above. As with any

detection method, manual confirmation is necessary as all methods have the propen-

sity to generate false positives. In many cases of a malware detection, re-imaging the
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system is likely the best option available even over cleaning by an antivirus prod-

uct. Symantec even recommends this approach for some malware infections [90].

These findings show utility for prioritization of slower runtime, but more inten-

sive, methods to determine threat information. While dynamic heuristic methods

generally have high accuracy, the runtime overhead required is typically incomplete

or operationally infeasible for analyzing the complete set of files. By first reducing

the set to the most suspect, these methods become more operationally viable and

valuable to the organization.

One can envision these issues in the following scenario of a workstation with

30,000 unique executables, which may be a conservative estimate. If samples run in a

sandbox environment for five seconds each, it takes 1.74 days to complete a scan of all

executables on the system. At this point in the scenario, three observations are readily

apparent. First, measuring scan time in days is not particularly a winning strategy.

Second, the assumption of a five second (or any fixed time) observation period being

sufficient is flawed as many malware samples, such as the Michelangelo virus [88],

do not execute until after a specific time period or event occurs. Third, sandbox

execution may fail due to specific dependencies not being met as Szor describes in

detail [91].

4.4.6 MaTR Strategic Payloads.

This test demonstrates MaTR’s ability to identify a few strategic value malware

payloads in an operational manner. Assuming previous identification of a generic

malware detection, this test demonstrates a series of subsequent decisions regarding

the payload of the discovered artifact. The specific payloads tested are backdoors,

spyware (including keyloggers), and malicious bots. The following subsections describe

the experimental results and discussion for this test against strategic payloads.
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This experiment uses the same experimental design of the propagation experiment.

The labeling for the payload test simply examines whether or not the samples have

the given functionality. The dataset includes explicitly labeled samples for three

major malware payloads as well as generically labeled unknown payload samples for

more direct operational employment. In other words, this experiment includes all

malware samples from the collection regardless of their labeled payload. A total of

8,057 samples with other types of payloads are included in stratified quantities in the

training and test sets.

Kolter and Maloof do not expressly state whether or not they use their other un-

known samples (1,126 unknown malware payload samples) in their tests [47]. They

most likely omit this unknown subset, because their labels came from manual assess-

ment of analyst reports. During their assessment, they cannot speculate labels for

remaining malware samples, because it leads to a high likelihood of having positive

class samples (any of the three classes they test) in the negative unknown subset.

Conversely, the labeling used for the MaTR tests has a lower likelihood of positive

class samples being present in the negative class, because of the selection of antivirus

labeling schemes and the strong agreement between them.

Tables 31 and 32 are the respective AUC and accuracy for the MaTR strategic

payload tests. While the results are generally lower than in the propagation tests,

they are operationally relevant as the classifiers identify these positive payloads while

including a diverse variety of other payloads in each negative class set. The bot

classifier performance exceeds all others with an impressive 96.6% prediction rate.

Table 31. Mean AUC and confidence intervals for MaTR payload test.

Classifier Mean 95% CI
Backdoor 0.893490 0.889489 — 0.897490
Spyware 0.851004 0.847215 — 0.854794
Bot 0.960844 0.957540 — 0.964148
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Table 32. Mean accuracy and confidence intervals for MaTR payload test.

Classifier Mean 95% CI
Backdoor 0.833863 0.829968 — 0.837758
Spyware 0.834477 0.830592 — 0.838363
Bot 0.965710 0.963464 — 0.967957

The resulting ROC curve (see Figure 19) for the payload classifiers supports the

quantitative data. The backdoor classifier FPR and FNR are 7.9% and 32.2% respec-

tively. The spyware classifier has a 5.2% FPR, but a 50.5% FNR. The best performing

classifier of the set, the malicious bot classifier, has a 0.8% FPR and 21.4% FNR. All

classifiers’ low FPRs correspond to the much larger negative classes, which is an ad-

vantageous characteristic. The relatively high FNR indicate that they misclassify

many instances of the positive class, especially the spyware model that misses over

half of the positives.
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Figure 19. ROC curve of MaTR against strategic malware payloads.
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These tests extend the application of this data source from previous work [27] in

malware detection to identifying likely payload. Since these tests include other addi-

tional payloads, these findings are operationally significant, because they demonstrate

the ability to deduce target payloads from a wide variety of other, non-enumerated

payloads using only static heuristics. These findings are significant, because they

demonstrate MaTR’s ability to provide additional threat information without human

analysis or time-consuming dynamic analysis methods.

The following scenario demonstrates the collective findings. Company ABC uses

an excellent commercial antivirus product, which their chief competitor, XYZ, dis-

covers. Threat XYZ has strong motivation to steal ABC’s intellectual property and

makes a small investment to modify existing malware to avoid detection by ABC’s

antivirus product. XYZ establishes a strong presence on ABC’s network and conducts

a variety of offensive information operations for over two years. Company ABC sus-

pects this activity as XYZ has mysteriously become more competitive in the market,

but rarely, if ever, discovers any indications to validate their theory.

With a technology similar to MaTR, ABC has a very strong chance of detecting

XYZ on their network early [27]. Section 4.3 shows how MaTR detects 98.6% of un-

known malware while three major commercial antivirus products combine to detect

less than 60%. As XYZ has multiple tools on ABC’s network, ABC must generate

a prioritized response plan to remediate the newly discovered tools. At this point,

MaTR can quickly provide ABC with additional threat information allowing ABC

to construct a rational response plan. ABC may choose to address self-propagating

malware first for containment purposes and next pursue backdoor and spyware reme-

diation to stop the loss of intellectual capital. If operational circumstances dictate

otherwise, ABC may select a more appropriate response to meet its unique needs.
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Based on the propagation and payload tests, MaTR shows the greatest potential

for identifying fast-spreading worms and viruses with various payloads. These identi-

fications have the lowest number of false positives, but the highest rates of generating

false negatives. Exploration of additional static features may provide additional in-

sight into these predictions.

4.5 Mapping to Endsley Situation Awareness Model

Threats routinely use malware to conduct offensive information operations, mak-

ing cyberspace SA regarding malware a significant goal for Information and Communi-

cation Technologies (ICT) operators. Bejtlich [8] states that achieving cyberspace SA

is a method to thwart APT operations. As previously described with Christodorescu

and Jha [14, 15] and as Section 4.3 demonstrates, threats can easily evade commer-

cial antivirus products by altering existing malware and exercising restraint when

considering the number of targets for custom malware.

MaTR experiment results demonstrate significant potential to enhance an op-

erator’s ability to achieve SA in cyberspace, because it provides timely and higher

accuracy malware detection and additional threat information using non-instruction-

based static heuristics than current research and commercial methods. MaTR mal-

ware detection results are statistically superior to a popular n-gram method [46, 47].

The MaTR identification of backdoor payloads is statistically superior to similar work

using an n-gram method [47] with higher mean performance for the remaining two

payloads from the original n-gram work.

While MaTR does not provide context, it does provide operators information

which is a “perception of relevant elements in the environment, as determined by

system displays. . . ” as Endsley [33] describes, which is the foundation for establishing

SA [33]. From the operator perspective, timely additional threat information is a
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critical enabling capability in complex, dynamic, high-threat environments. This

section describes operator SA implications based on MaTR’s performance using the

Endsley model.

Figure 20 shows a logical application of the primary portion of the Endsley SA

model [33] to the MaTR outputs. Endsley lists several examples of the first step of

achieving SA, Level 1, specifically “to perceive the status, attributes, and dynam-

ics of relevant elements in the environment” [33]. In one of her examples, drivers

need to know location and state information for their own vehicle, other vehicles and

obstructions. “Relevant elements” in cyberspace regarding malware require a high

level of detection (i.e., state information) to first perceive the threat and also include

propagation methods and payloads, which are both attributes further describing the

malware element. Other attributes are possible, such as attribution information.

Therefore, all MaTR outputs are pertinent to the operator establishing Level 1 SA.

Collectively they provide a much clearer view of the threat environment allowing for

simpler operator acquisition of Level 2 SA.
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Figure 20. Mapping of Endsley situation awareness model (adapted from [33]).
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The presence of certain malware payloads on systems with access to sensitive in-

formation is a strong indicator of threat interest and intention. The identification of

such systems is another example of a pertinent Level 1 SA element, but this infor-

mation should be readily available to operators or their organizations, because it is

under their direct control. In the projection of the Endsley SA model to cyberspace

regarding malware threats, comprehending current targets and threat activities is an

example of Level 2 SA. Extrapolating future targets and activities is an example of

Level 3 SA.

The following scenario is a continuation of the scenario previously introduced in

Chapter I. The network diagram in Figure 1 shows three major business divisions

and a sampling of endpoint systems within each. The figure also indicates endpoints

infected with malware in each division identified by a generic detection capability and

not as a result of a commercial antivirus product.

The following discussion assumes that the hypothetical system interface clearly

portrays the same information to the operator. One method to implement this in-

terface capability is to have local copies of the detection classifier report alerts to a

central server along with the infected system’s address. The central server can then

map these alerts to the current network diagram.

4.5.1 Achieving SA with Detection Information.

Interpreting the above situation via Endsley’s model [33], the human operator is

likely overwhelmed for multiple reasons. The model’s system factors (system and

interface design, stress, workload, complexity and automation) all have negative im-

pacts on the operator SA. Individual factors, such as ability, experience and training,

may not compensate for the negative influences of the system factors. The limitations
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on working memory and attention make this scenario even more complicated for

the operator. A brief exposition of the system factors follows.

First, the detection system and interface do not directly provide the necessary

information to reach Level 2 SA. The operator must manually search for corroborative

elements to support their initial perception of the environment. Specific elements the

operator must determine regard the nature of the threat, which may require human

analysis after sample collection. Matching the available known elements from the

situation to available schemata is difficult as the known elements may correspond to

multiple schemata related to malware. There are several major classes of malware

payloads and three major propagation methods, but nearly all are associated with

different scripts. The cyberspace “big picture” is not readily apparent for human

comprehension as the alerts may be adware or even empty payloads which are common

for computer viruses [91]. Operating on the incomplete or erroneous SA may adversely

affect operator decision making processes minimizing effectiveness for all experience

levels.

The operator may experience increased stress in tense dynamic situations when

the system presents alerts. The operator feels compelled to act on the alert, but he

has limited visibility into the problem. Due to ICT complexity, the operator may

not have other automated means of assistance to reach Level 2 SA, which further

contributes to stress. As the operator struggles, the additional stress may cause

“premature closure” [33], where the operator reaches a premature decision based on

limited Level 1 SA. When this happens, operator bias may prevent achieving a real

understanding of the situation. At this point, the tactical stress effectively degrades

the operator decision making processes.

With only detection information, the operator workload necessarily increases. The

operator must strive to acquire the additional pertinent elements related to function-
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ality in order to achieve Level 2 SA. If these elements are only available via slower

manual processes, reaching the next level may not be available within time-sensitive

tactical situations.

The complexities of the above scenario are readily apparent. The state data for

even small networks is so large that automated IDSs cannot maintain it. The human

operator also cannot visualize the state data, because no tools presently provide this

capability. In addition to the complexity of the automated elements, the threat itself is

another complex element changing actions based on its perception of the environment

and after accomplishing assigned tasks.

Finally, the automation afforded by the detection capability provides incomplete

information and increases operator workload while simultaneously increasing stress.

As a result, the automation likely causes more stress and workload similar to that of

current IDSs, which are notorious for flooding users with false alerts. The alert flood

serves to condition the operator to ignore the system. Running the system with lower

sensitivity, the operator interfaces with it less often causing the system to become

ineffective. Section 4.5.2 describes how MaTR outputs of relevant threat information

impacts the operator’s ability to achieve SA.

For a practical application of the Endsley SA model, what can the operator de-

duce from this scenario with only detection information? Most notably, the operator

can observe the number of infected hosts in each business division. This informa-

tion is not actionable, because it does not provide a solid foundation for Level 2 SA

to justify specific actions. With only the detection information, the operator must

treat all infected systems as the worst local situation possible, which is impractically

resource intensive. The number of infected hosts combined with the known sensitivi-

ties of particular business divisions may be enough information to match a particular

schemata and trigger effective scripts, but only in rare cases.
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4.5.2 Achieving SA with MaTR.

Based on MaTR outputs, the available network diagram provides a sufficient de-

scription of elements to enable the operator to achieve Level 2 and Level 3 SA (see

Figure 21). In the previous scenario, all threats look identical, but MaTR can distin-

guish between them. A discussion of the same system factors follows.
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Figure 21. Situation awareness indicators afforded with additional threat information.

First, the system provides additional threat information not directly available with

current technology allowing the operator to more accurately assess malware behavior

and capabilities in the environment. End users researching functionality of specific

malware names provided by antivirus products is an example of unavailability of the

threat information at alert time. With the additional threat information at alert

time, an operator with minimal training can effectively triage the network and form

an appropriate response plan to address current threat activities and targets (Level

2 SA). In this scenario, the most significant threats are the backdoor and spyware
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located in the assembly division. These tools allow for a wide range of effective

offensive information operations. The identification of the propagation methods and

payloads allows for simple schemata matching with appropriate scripts. Response

scripts associated with the matched schemata of the backdoor and spyware include

re-imaging the infected systems followed by immediate compulsory password changes.

The next most significant threat is in the manufacturing division. The operator’s

Level 2 SA enables him to reason whether the bot or the virus is the most significant

threat. At this point, the operator may have knowledge of other Level 1 elements, such

as the manufacturing division’s sensitivity to system availability. These additional

out-of-band elements are important as well and they apply equally to the previous

scenario. The least significant threats are the adware threats.

Furthermore, from a stronger Level 2 SA, the operator can now project threat

activities and targets (Level 3 SA). The operator may deduce that the threat may

be preparing for the final stages of production of a similar system as their presence

appears strongest on the assembly division. Perhaps their competitor has already

exfiltrated necessary data from the research and development division and manufac-

turing divisions and now seeks assembly secrets to ensure their success. Projection

of specific future threat activity include the use of stolen user credentials to maintain

access to the network or to gain access to additional information and the exfiltration

of large amounts of data.

While undoubtedly stressful to discover significant threat activity, MaTR does

not add to operator stress as in the previous scenario. In the previous scenario, the

detection capability is similar to a fire alarm in a large building. It creates more

questions than it answers. Where’s the fire? Is this the safest escape route? Is

the fire department responding? MaTR likely reduces stress by providing strong

indicators of meaningful data especially given its low FPR from Section 4.2. As a
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DT implementation, it is feasible for the operator to examine its “rationale” for the

alert, because its features are directly human understandable.

As the operator workload increases due to perception of the situation, the addi-

tional workload focuses on addressing the threat, not necessarily searching for ad-

ditional elements to confirm theories of threat capability. MaTR outputs result in

less unknowns and all without manual analysis of the detected malware. The out-

puts focus on providing clarity to the operator of an otherwise extremely complex

and dynamic system. MaTR provides this additional detail significantly faster than

commercial antivirus products as shown in Section 4.3.

Endsley [33] describes automation as a potential benefit or hindrance to SA. She

depicts how automation is a common reason for degraded SA, especially for periods

when the system is not available to the user and the user has developed a strong

reliance upon it. The case with MaTR matches an exception, because it “reduces

unnecessary manual work and data integration to achieve SA” [33].

4.6 Summary

MaTR demonstrates superior performance to n-gram detection research. Recon-

struction of the Kolter and Maloof experiment in malware detection [46, 47] allows

for a true apples-to-apples comparison using the same PE sources. Both methods

use identical folds for cross validation and compute metrics in the same manner. Us-

ing the set of unknown malware PE files as a separate validation set, MaTR again

outperforms the n-gram detection method.

Against unknown malware, MaTR outperforms three major commercial anti-virus

products. The commercial products do not appreciably increase performance at their

highest sensitivity levels, while MaTR detection rates exceed 90%. Collectively, the

three commercial products fail to detect 60% of the unknown malware samples.
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For propagation method and payload identification, MaTR has higher mean per-

formance than the reported n-gram results reported by Kolter and Maloof [47]. The

MaTR results in the payload tests are pessimistic as they include additional classes

of malware other than those explicitly tested as positive classes, which is more repre-

sentative of the true malware population and more operationally applicable. Future

work includes performing another exhaustive comparison as with their detection work

to ensure that both methods train with the same class labels and folds.

Section 4.5 describes how simple detection information alone does not provide

adequate SA, even for experienced operators. The detection information prompts

more questions than it answers causing it to ironically decrease SA by complicating

system factors. MaTR outputs, while elements of Level 1 SA, provide significantly

greater threat information enabling the operator to achieve Level 2 and even Level

3 SA. The focused visibility into the threat environment that MaTR provides the

human operator dramatically exceeds awareness afforded by simple detection alone.

In more concrete terms, MaTR detection accuracy of 99.9% reported in Sections

4.2 and 4.3 is superior to the best performing static heuristic research and a com-

bination of three commercial antivirus products. MaTR demonstrates the ability to

identify unknown threats with 98.6% accuracy (Section 4.3) where traditional de-

fenses fail to detect 60%. While not as spectacular as its detection rates, MaTR

also provides propagation information with 86+% accuracy and identifies strategic

payloads from all malware payloads with an accuracy of 83+%.
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V. Conclusion

In 2010, Symantec saw 286 million new malware threats, a 19% increase from the

rate of new threats in 2009 [24]. The same article quotes Symantec’s chief executive

officer from February 2011, when he said that “traditional antivirus scans ‘long ago

failed to keep up’”. Worse yet, operators have little visibility into the complex and

hyper-dynamic state of Information and Communication Technologies (ICT) and thus

have minimal SA.

MaTR uses standard machine learning algorithms and traditional anomaly and

structure information to achieve detection accuracy of 99.9% on test sets composed

of non-malware and malware. This accuracy is a statistically significant improve-

ment over related work. In validation tests against a set of unknown malware, the

same trained model again demonstrates statistically significant superior performance

over both a reconstruction of tests from leading related work and three commercial

antivirus products combined.

The major goal for MaTR is to provide enhanced cyberspace SA for operators,

where they traditionally have minimal visibility. By restricting the model to intelligi-

ble high-level information, the model can provide human operators with justification

for its predictions unlike other models. The solution is better suited for tactical em-

ployment due to its low runtime performance than other more exhaustive techniques

that use tracing, generate disassembly and control flow graphs.

Previous research applications of machine learning to malware detection predom-

inantly center around the analysis of n-grams, which in spite of their widespread

employment are relatively meaningless short byte string sequences. Kolter and Mal-

oof [46, 47] admit the difficulty of assigning meaning to many of the most relevant

n-grams. These n-grams may be stronger indicators of the presence of certain strings

and data offsets than instructions as many generally believe.
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Practitioners must be cautious when relying on n-grams as the primary feature

source as it is completely within the attacker’s realm of control and tactical modifica-

tions in this area are low cost and low effort. The risk associated with investing finan-

cial and technical resources into an unexplainable and unjustifiable defense against

an adaptable foe is intuitively high. Making strategic decisions to use such opera-

tionally untested solutions can leave an organization at the mercy of trivial changes

in attacker tactics. This observation is analogous to an adversary developing a $100K

missile that defeats a $1B stealth bomber.

Several other techniques require elusive instruction-level information, which is dif-

ficult to validate and time intensive to collect. Collection methods include dynamic

debugger tracing and static unpacking and disassembly. Malware has sufficient pro-

tections against full automation of both methods as malicious logic often includes

debugger detection and instruction obfuscation capabilities. This research does not

attempt to gather this elusive data for classification purposes.

This research already demonstrates substantial technological gain for the USAF

as it directly and immediately addresses at least four of the eight AFRL identified

FLTCs in cyberspace, especially “Assured Operations in High Threat Environments”.

In spite of the described weaknesses in some of these classifiers, any of these mod-

els provides a great capability leap for the USAF, Department of Defense, and the

US government. The USAF needs a robust malware detection model that can pro-

vide additional threat information in order to survive against adaptable foes in an

increasingly dangerous cyberspace.
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5.1 Research Contributions

This research demonstrates multiple engineering advantages for static heuristic

malware detection and classification using only traditional anomaly and structural

data as features. The resulting classifiers for malware detection, propagation meth-

ods and payloads are simpler to construct and perform at similar or superior levels

to published results for leading research using static heuristics [46, 47]. Against a

validation set of unknown malware, MaTR significantly outperforms n-gram classi-

fiers built according to [46, 47] and three commercial antivirus products—even when

combining their detection capabilities.

MaTR joins the original Kolter and Maloof [47] work as a rare application of static

heuristics to providing threat information in addition to simple detection. MaTR

performs better than their n-gram classifiers for identifying malware payloads. This

research also reports MaTR performance for predicting the propagation methods

currently used by the antivirus industry and payloads in an operational manner.

This work also makes a unique contribution by applying the Endsley [33] SA

model to MaTR capabilities and projecting it as a positive impact on cyberspace

SA. Simple detection alone more likely hampers operators from reaching higher levels

of SA, but MaTR’s focused outputs address operator information requirements by

providing relevant threat information. A simple scenario illustrates the value of the

additional threat information that MaTR provides.

Lastly, this work has resulted in three publications to date including one thesis

[25, 26, 61]. Future publications include one journal submission currently in second

review [27].
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5.2 Future Research Recommendations

Recommendations for future research include continuing evaluation of MaTR-like

systems versus other static heuristic methods. In particular, reconstructing the Kolter

and Maloof [47] original work with the same labeling method as used in Section 4.4

may reveal additional advantages for non-instruction-based, static heuristic classifiers.

The identification of other disparate, SA-focused cyberspace sensors will serve to

increase the robustness and capabilities of this research. Systems like MaTR can

be one of a set of sensors to fuse together in order to provide cyberspace operators

greater capabilities to achieve SA. Other potential sensors include network and log

classifiers.

Extensions to MaTR include examinations of instruction-level data and dynamic

heuristics as other sources of Level 1 SA elements and as means to further validate

MaTR performance. Investigating data fusion of these systems may provide imme-

diate operator feedback while simultaneously instantiating confirmation with slower,

but potentially more accurate sensors. These approaches may further increase oper-

ator confidence levels in overall system predictions.
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Appendix A: Confusion Matrices

A.1 Modeling Approach and Best Classifier Pilot

Tables 33, 34, 35 and 36 are the confusion matrix data for the detection problem

from Section 3.3.3.1.

Table 33. LDF confusion matrix test results for detection problem.

Predictions

Class NM M
A

ct
u
al NM 2, 165 178

M 248 805

Table 34. DDA confusion matrix test results for detection problem.

Predictions

Class NM M

A
ct

u
al NM 2, 165 178

M 278 775

Table 35. FNN confusion matrix test results for detection problem.

Predictions

Class NM M

A
ct

u
al NM 2, 237 106

M 80 972

Tables 37, 38, 39 and 40 are the confusion matrix statistics for the detection

problem from Section 3.3.3.1.

Tables 41, 42, 43 and 44 are the confusion matrix data for the direct typing

problem from Section 3.3.3.1.

149



Table 36. DT confusion matrix test results for detection problem.

Predictions

Class NM M

A
ct

u
al NM 2, 301 42

M 38 1, 014

Table 37. LDF test confusion matrix statistics for detection problem.

Statistic NM M
Producer Accuracy 0.9239 0.7647
Consumer Accuracy 0.8973 0.8186

Omission Error 0.0761 0.2353
Commission Error 0.1027 0.1814

Kappa 0.7013

Table 38. DDA test confusion matrix statistics for detection problem.

Statistic NM M
Producer Accuracy 0.9241 0.7363
Consumer Accuracy 0.8864 0.8133

Omission Error 0.0759 0.2637
Commission Error 0.1136 0.1867

Kappa 0.6780

Table 39. FNN test confusion matrix statistics for detection problem.

Statistic NM M
Producer Accuracy 0.9547 0.9235
Consumer Accuracy 0.9653 0.9016

Omission Error 0.0453 0.0765
Commission Error 0.0347 0.0984

Kappa 0.8724

Table 40. DT test confusion matrix statistics for detection problem.

Statistic NM M
Producer Accuracy 0.9821 0.9639
Consumer Accuracy 0.9837 0.9603

Omission Error 0.0179 0.0361
Commission Error 0.0163 0.0397

Kappa 0.9450
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Table 41. LDF confusion matrix test results for direct typing problem.

Predictions

Class NM BD T V

A
ct

u
al

NM 2, 116 33 155 38

BD 67 343 221 40

T 28 55 94 9

V 13 15 80 87

Table 42. DDA confusion matrix test results for direct typing problem.

Predictions

Class NM BD T V

A
ct

u
al

NM 2, 165 178 0 0

BD 174 498 0 0

T 65 121 0 0

V 39 156 0 0

Table 43. FNN confusion matrix test results for direct typing problem.

Predictions

Class NM BD T V

A
ct

u
al

NM 2, 279 52 0 11

BD 62 587 0 22

T 29 143 0 14

V 23 51 0 121

Table 44. DT confusion matrix test results for direct typing problem.

Predictions

Class NM BD T V

A
ct

u
al

NM 2, 292 36 10 5

BD 24 536 92 20

T 8 74 83 21

V 6 21 29 140
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A.2 Model Parameter Assessment Pilot

Table 45 is the mean confusion matrix for the model parameter detection test

from Section 3.3.3.2. Table 46 is the mean confusion matrix for the model parameter

typing test from Section 3.3.3.2.

Table 45. Detection classifier results mean confusion matrix.

Predictions

Class NM M
A

ct
u
al NM 2,653 14

M 12 1,321

Table 46. Malware type classifier results mean confusion matrix.

Predictions

Class BD DW TJ PS W DR V

A
ct

u
al

BD 1,419 112 131 85 69 54 19

DW 121 690 109 43 28 43 13

TJ 151 121 241 45 38 38 22

PS 120 51 55 237 22 28 8

W 89 31 46 20 163 14 18

DR 82 60 49 33 18 139 6

V 36 20 42 12 20 8 178

A.3 Detecting Unknown Malware

Table 47 is the partial confusion matrix data for MaTR and the n-gram methods

on the relatively unknown malware validation set. This test does not include a nega-

tive class and therefore has only partial results (no true negatives or false positives)

to report in the confusion matrix.
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Table 47. Partial confusion matrix data for MaTR and n-gram detection methods on
unknown malware validation set (no negative class).

Method (Sensitivity) TP FN
MaTR (low) 26.10 1.70
n-gram (low) 24.20 3.60
MaTR (medium) 27.40 0.40
n-gram (medium) 26.40 1.40
MaTR (high) 27.70 0.10
n-gram (high) 27.30 0.50

A.4 MaTR Additional Threat Information

Tables 48, 49 and 50 are the mean confusion matrices for MaTR propagation tests

from Section 4.4.

Table 48. Mean confusion matrix data for MaTR on KM-defined payloads [47].

Class TP FP TN FN
Backdoor 1,055 142 316 53
Mass mailer 97 15 1,341 112
Virus 192 24 1,225 125

Table 49. Mean confusion matrix data for MaTR propagation methods.

Class TP FP TN FN
Trojan 1,981 276 371 94
Worm 424 109 1,926 264
Virus 169 21 2,384 148

Table 50. Mean confusion matrix data for MaTR payloads.

Class TP FP TN FN
Backdoor 752 157 1,824 356
Spyware 384 120 2,193 391
Bot 315 20 2,668 86
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